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Abstract Using the LSMS-ISA Tanzania National Panel Survey by the World Bank, we study the 

relationship between rural household consumption growth and temperature shocks over the period 

2008 – 2013. Temperature shocks have a negative and significant impact on household growth only 

if their initial consumption lies below a critical threshold. As such, temperature shocks slow income 

convergence among households. Agricultural yields and labour productivity are the main 

transmission channels. These findings support the Schelling Conjecture: economic development 

would allow poor farming households to cope with climate change, and closing the yield gap and 

modernizing agriculture is crucial for adaptation to the negative impacts of global warming. 
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1 Introduction 

 

Poorer countries are generally found to be more vulnerable to climate change and weather variability, 

but research is concentrated in richer countries. Many would suspect that poorer people are more 

vulnerable too, but research is scarce. As Tol (2016) notes: “The pattern of vulnerability that is seen 

between countries, is likely to hold within countries as well. This would strengthen the worries about 

climate change, but there has hardly been any research on the quantification of the intra-country 

distributional implications of the impacts of climate change”.  

 

We shed light on the following questions: is a climate-induced poverty trap plausible? Can it describe 

the growth dynamics of farmer households in a developing context? To this end, we use the empirical 

tools and models of development economics to examine the link between short-term household 

welfare dynamics and temperature shocks in rural Tanzania. Specifically, we employ a micro-growth 

model borrowed from the macro-growth literature, and test for convergence among households and 

for the significance of weather shocks as determinants of growth, while controlling for heterogeneity. 

Then, we test for the presence of consumption thresholds with regard to the impacts of temperature 

shocks. Finally, guided by previous theoretical and empirical literature, we test potential transmission 

channels, viz. health expenditure, labour productivity, crop yields and asset growth, that may explain 

heterogeneity of impacts and the lack of consumption smoothing.  

 

This paper thus speaks to two distinct strands of research: the development literature on poverty traps, 

that investigates the issues of poverty persistence, growth divergence and multiple equilibria; and the 

emerging climate-economy literature that studies short-run elasticities of weather shocks impacts on 

growth. Our identification strategy looks at short-run weather variations to infer changes over longer 

periods, exploiting the tight linkages between short-run weather shocks and climate change (Dell, 

Jones and Olken, 2014). 

 

Tanzania is an appropriate setting for such a study for a number of reasons. It is commonly accepted 

that the future impacts of climate change will disproportionately affect poorer and hotter countries 

(Tol, 2015), and especially people living in rural, remote and scarcely populated areas, whose main 

source of income is agriculture. Sub-Saharan Africa, in particular, has been identified as one of the 

most vulnerable parts of the world to climate change (IPCC, 2014). Tanzania is a poor and hot Sub-
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Saharan country, where in 2015 68% of the population lived in rural areas1. It is typically classified 

as a country under high risk from the impacts of future climate change: temperatures in the country 

are predicted to rise 2-4°C by 2100, “with warming more concentrated during the dry season and in 

the interior regions of the country” (Rowhani, Lobell, Linderman & Ramankutty, 2011). Ahmed et 

al. (2011) underline the importance of agriculture for the Tanzanian economy: “The importance of 

agriculture to the poor is particularly true for Tanzania, where agriculture accounts for about half of 

gross production, and employs about 80 percent of the labour force. Agriculture in Tanzania is also 

primarily rain-fed, with only two percent of arable land having irrigation facilities—far below the 

potentially irrigable share”.  Tanzania is also a country which exhibits quite large climatic diversity, 

as noted by Rowhani, Lobell, Linderman, and Ramankutty (2011): “on the Indian Ocean, the United 

Republic of Tanzania possesses a complex landscape, formed by the western and eastern branches of 

the East African Rift, resulting in substantial spatial variability in climate within the nation. The 

country’s climate varies from tropical at the coast to temperate in the highlands”. Last but not least, 

data availability: we use the Living Standard Measurement Survey (LSMS) – Integrated Survey on 

Agriculture (ISA) Tanzania National Panel Survey by the World Bank, a three-wave household 

longitudinal dataset covering the period 2008 – 2013.  

 

What emerges is a sharp and striking heterogeneity: temperature-induced consumption shocks only 

affect the poorest households. The observed growth of rural households suffers from a negative and 

significant contemporaneous impact of temperature shocks only if their initial consumption level lies 

below a critical threshold. In other words, positive temperature shocks slow convergence among 

households, and enhance inequalities. The main transmission channels responsible for this 

heterogeneity appear to be agricultural yields and labour productivity. Additionally, no impact on 

asset growth is found, suggesting that asset smoothing is taking place and that poorest households 

choose to destabilize their consumption in order not to have to sell their assets, or that they do not 

have enough assets to sell to cope with the income reduction caused by temperature shocks.  

 

Obviously, given the short-run nature of this dataset, our capacity to assess convergence is limited, 

and we can only cautiously infer long-run trends. Also, we do not directly test for the presence of 

multiple equilibria and hence for the existence of a poverty trap. Under a classic ‘poverty trap’ 

threshold, households are trapped in an equilibrium with permanently low income, whereas here we 

only check whether there is a consumption threshold above which temperature impacts turn 

insignificant, i.e. whether impacts disappear as households grow richer. Deceleration is not 

                                                             
1 http://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=TZ 

http://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=TZ
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bifurcation, as noted by Dercon (2004) and Jalan and Ravallion (2002). Finally, external validity with 

respect to climate change is an issue, given the intrinsic difference between short-run weather shocks 

and long-run changes in climate. 

 

The contributions of this paper are the following. First, it complements aggregate growth - climate 

empirics with available micro panel data, by providing evidence on the (short-run) micro causal 

relationship between weather anomalies poverty and growth. Second, it links the weather-economic 

growth literature with the development literature on poverty traps, by applying the tools and models 

of the latter to the research questions of the former. Third, it contributes to the development literature, 

by testing for consumption vs asset smoothing, which has been rarely been done according to Carter 

and Lybbert (2012)2; and by showing that, when controlling for temperature shocks (often ignored in 

development literature), precipitation impacts are insignificant and close to zero. 

 

The rest of this paper is arranged as follows. Section 2 reviews the relevant literature. Section 3 

illustrates the empirical framework and the identification strategy. Section 4 describes data and 

provides introductory descriptive statistics. Section 5 shows and comments the results of the empirical 

analysis. Section 6 conducts a host of robustness checks. Section 7 investigates the channels of the 

heterogeneity of impacts. Section 8 wraps up, illustrates the policy implications of the analysis with 

regard to climate change, adds caveats and concludes. 

 

2 Literature review 

 

The recent and growing body of empirical works focusing on the climate-economy relationship and 

its channels stems from the interest to try to understand and quantify the future impacts of climate 

change on human welfare. Dell, Jones and Olken (2014) review this literature and notice how old 

cross-sectional works (Dell, Jones, & Olken, 2009; Gallup, Sachs, & Mellinger, 1999; Nordhaus, 

2006), whose validity is challenged by the risk of endogeneity and omitted variable bias, have recently 

been replaced by more appropriate and robust panel methods, both at the macro (Bansal & Ochoa, 

2011; Burke, Hsiang, & Miguel, 2015; Dell, Jones, & Olken, 2012; Hsiang, 2010; Hsiang & Jina, 

2014)  and micro (Cachon, Gallino, & Olivares, 2012; Cachon et al., 2012; Deschenes & Greenstone, 

2011; Graff Zivin & Neidell, 2014; Heal & Park, 2015; Niemelä, Hannula, Rautio, Reijula, & Railio, 

2002; Schlenker & Lobell, 2010; Sudarshan & Tewari, 2013) level, which isolate the exogenous 

effect of weather variables on the economic outcome of interest. The main findings of this emerging 

                                                             
2 “Unfortunately, much of the empirical literature has not tested consumption smoothing against a theoretically well-

defined alternative” 
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literature are that weather affects economic activity and growth through a wide range of channels and 

that these impacts are substantially bigger and significant in poor countries3.  

Agriculture, health and labour productivity are among the most important transmission channels of 

such impacts. Several studies have investigate the relationship between crop yields and weather 

variability, starting from the very plausible assumption that extreme temperatures and rainfall above 

or below a certain threshold may have damaging consequences on crop yields, especially in 

developing countries whose agriculture is less modernized (Challinor, Wheeler, Craufurd, & Slingo, 

2005; Feng, Krueger, & Oppenheimer, 2010; Guiteras, 2009; Levine & Yang, 2006; Li et al., 2010; 

Porter & Semenov, 2005; Rowhani et al., 2011; Schlenker & Lobell, 2010; Welch et al., 2010). Other 

works have provided theoretical underpinnings to explain how low crop yields and yield gaps could 

be one of the reasons why smallholder farmers are trapped in chronic poverty (Barrett & Swallow, 

2006; Sachs, 2008; Tittonell & Giller, 2013).  

Both the economics and epidemiology literatures  have examined the impact temperature can have 

on morbidity and mortality, which in turn affect labour productivity and income (and vice versa). 

Empirical works such as, among the others, Barreca (2012), Burgess, Deschenes, Donaldson, and 

Greenstone (2011), Deschênes and Greenstone, (2011) and Goldberg, Gasparrini, Armstrong, and 

Valois (2011) have documented the effects of temperature and heat waves on health, particularly 

mortality, using panel methods. From a theoretical point of view, instead, the long-run relationship 

between health and climate has been explored by Strulik (2008) and Tol (2011). 

Finally, a recent but already large micro literature (Cachon, Gallino, & Olivares, 2012; Cachon et al., 

2012; Graff Zivin & Neidell, 2014; Heal & Park, 2015; Niemelä, Hannula, Rautio, Reijula, & Railio, 

2002; Park, 2017; Sudarshan & Tewari, 2013) has found vast and significant effects of temperature 

anomalies on the productivity of workers, especially on those who work outdoor. 

 

In parallel, the development literature looks at the impacts of weather shocks on household welfare, 

vulnerability and poverty traps. This literature uses weather variation as an instrument to study non-

climatic relationships (to the extent that climatic variables are exogenously determined). While, in 

her pioneering work, Paxson (1992) found that unexpected rainfall shocks did not have serious 

welfare consequences for Thai farm households, because they used savings and dissavings to buffer 

consumption from income shocks, the partial insurance strategies adopted by poor farmers against a 

temporary shock could indeed imply a reduction in crop yields with potentially negative impacts on 

                                                             
3 These panel estimates have then been employed and calibrated ad hoc in simulation studies on the impacts of future 

climate change (Lemoine & Kapnick, 2015; Moore & Diaz, 2015) to provide empirically-grounded impact estimates to 

be used in Integrated Assessment Models (IAMs), and overcome the critiques about the arbitrary choice of crucial 

parameters like the damage function and climate sensitivity (Pindyck, 2012, 2013; Stern, 2013; Weitzman, 2009, 2010).  

 



5 
 

consumption growth (Morduch, 1995; Townsend, 1995). This because households might not be able 

to smooth their consumption in response to income fluctuations due to credit or liquidity constraints 

(Hirvonen, 2016; Morduch, 1995; Rosenzweig & Wolpin, 1993). In this respect, uninsured risk may 

be a cause of poverty due to two distinct mechanisms, one ex ante or behavioural and one ex post 

(Dercon, 2004). The first can be explained as follows: since poorer farmers are generally risk-averse, 

uninsured risk determines ex-ante changing in behaviour that implies precautionary saving and/or 

other optimal strategies to avoid profitable but risky opportunities at the expenses of mean returns 

(Dercon, 1996, 2004; Elbers, Gunning, & Kinsey, 2007). Dercon (1996), analysing, through a 

theoretical model of risk-taking behaviours, the relationship between risk, crop choice and savings in 

rural Tanzania, finds that wealthier households engage in more risky but higher return activities than 

households with a poor asset base. The ex post impact, instead, is the one that materializes after a 

‘bad’ state (Dercon, 2004): in this respect weather shocks are shown to have an impact on ex-post 

poverty too. In such a context, several theoretical models underline the issues of persistence to 

highlight that temporary shocks can affect long-term outcomes such as the process of income 

convergence among households (Carter, Little, Mogues, & Negatu Little, Mogues, & Negatu, 2007; 

Reis, 2009). This permanent effect of temporary shocks has been typically explained by asset 

smoothing (Barrett & Carter, 2013; Carter & Barrett, 2006; Carter Little, Mogues, & Negatu, 2007) 

or by the conservative behaviour of risk-averse households that shy away from investing in profitable 

but risky technologies (Reis, 2009).  

Indeed, this is what has emerged from many empirical studies on household welfare dynamics: 

Fafchamps, Udry and Czukas (1998), using panel data for farming households in Burkina Faso, test 

the hypothesis that households keep livestock as a buffer stock to insulate their consumption from 

income fluctuations, but only find evidence for very limited consumption smoothing. Dercon (2004) 

himself, using panel data from Ethiopia during the period 1989 – 1997, finds that rainfall shocks had 

a substantial contemporaneous impact on food consumption growth, and also shows persistence of 

impacts, suggesting that rainfall shocks may have a long-lasting effect which goes beyond the welfare 

cost of short-term consumption fluctuations. His subsequent works in the same setting confirmed 

these results (Dercon & Christiaensen, 2011; Dercon, Hoddinott, & Woldehanna, 2005; Dercon & 

Krishnan, 2000). Carter, Little, Mogues and Negatu (2007) explore the asset dynamics of Ethiopian 

and Honduran households in the wake of environmental shocks, and find that household growth can 

be hit not just in the immediate aftermaths but also in the long-run, and that coping strategies adopted 

are costly and can be a source of divergence among households. Hirvonen (2016), using the Kagera 

Health and Development Survey (KHDS), spanning the period 1991-2009, shows how household 

consumption co-moves with temperature, and then uses temperature shocks as a proxy for income 

shocks to study long-term migration decisions in Tanzania. 
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Other studies have instead focused on the possibility of long-run impacts on household welfare from 

weather shocks. Hoddinott and Kinsey (2001) first, reviewing literature on household responses to 

weather-related shocks, note how what emerges is that “[…] some, but not all households can smooth 

consumption. In particular, households facing liquidity constraints have limited smoothing ability. 

For these households, therefore, income fluctuations will generate a welfare loss”. Then, drawing on 

a panel dataset in Zimbabwe, they try to determine whether these shocks have only transitory or also 

permanent effects, by examining growth in the heights of young children. They discover droughts 

have a long-lasting impact on child growth, and that this impact is heterogeneous, i.e. greatest 

amongst children living in poor households. They notice how this points to the possibility of the 

intergenerational transmission of poorer health status resulting from drought shocks. Alderman, 

Hoddinott and Kinsey (2006) follow this path and explore the long-term consequences of shocks on 

individuals, starting from the observation that where temporary shocks have long-lasting impacts, 

utility losses may be higher, and finding analogous results. 

 

The amount of evidence of both short-run and long-run impacts of weather shocks on household 

welfare, and the contradictory evidence on consumption smoothing, has been the spark for the 

development of another strand of literature, based on the concept of “poverty traps”. 

The concept of poverty traps has been proposed both in macro- as well as in microeconomics and is 

closely related to the idea of convergence in neoclassical economics. The assumption of diminishing 

returns is a crucial one in neoclassical economic growth: essentially, it implies that the incomes of 

poorer countries (households) will eventually ‘catch up’ over time with those of richer countries 

(households). The following empirical evidence on macro growth contradicted the assumed 

convergence hypothesis between countries, as Carter and Barrett (2006) describe, “within the macro 

growth literature, two alternatives to the neoclassical growth model have emerged to account for the 

observed pattern of divergence”, namely the idea of club convergence (Baumol, 1986; De Long, 

1988; Quah, 1996, 1997) and the concepts of thresholds and multiple equilibria (Azariadis & Drazen, 

1990; Hansen, 2000; Murphy, Shleifer, & Vishny, 1989). 

At the micro level, as Carter and Barrett (2006) argue, it may be that “As with nations, individuals 

may also have intrinsic characteristics (skills, savings propensities, discount rates, and geographic 

locations) that condition their desired level of accumulation and ultimate equilibrium level of well-

being. However, there may also be analogues to the locally increasing returns to scale that generate 

multiple equilibria and thwart the ability of initially poor households to catch up and converge with 

their wealthier neighbours”.  

Starting from this hypothesis, an empirical literature has developed to try and detect the presence of 
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thresholds and multiple equilibria at the micro level. The task is hard, as noticed by Barrett and Carter 

(2013), Carter and Barrett (2006) and Jalan and Ravallion (2002), due to the lack of sufficiently long 

panels at the household level in developing countries, which contrasts with the fact that convergence 

among households, as well as post-shock recovery, are long-run processes. 

While it is thus difficult to empirically detect the presence of multiple equilibria, several studies have 

attempted to do so, and have provided evidence of at least significant persistency of poverty. These 

works can be divided in two categories. The first has focused on income and consumption growth as 

indicators of household welfare (Dercon, 2004; Jalan & Ravallion, 2002, 2004). Dercon (2004) only 

tests for, and discovers, persistence of shocks, but he cannot assert the existence of a poverty trap, as 

he explicitly states: “This is not the same as testing for the existence of a ‘poverty trap’ in the sense 

of the investigation of the threshold, below which there is a tendency to be trapped in permanently 

low income, from which no escape is possible except for by large positive shocks. Persistence within 

the time period of the data does not exclude permanent effects, but does not imply them either”. Jalan 

and Ravallion (2002; 2004) draw from the standard growth literature to derive micro-based growth 

models and explicitly test for divergence due to spatial factors and geographic externalities, finding 

evidence which supports the notion of “geographic poverty traps”, i.e. the idea that, ceteris paribus, 

the welfare of a household living in a well-endowed area grows while the one of an otherwise identical 

household living in an unfavourable geographic area stagnates. 

The other, the so-called ‘asset-based’ approach, taking cue from the theoretical underpinnings 

provided by Barrett and Carter (2006; 2013), focuses on asset growth as the dependent variable of 

interest, arguing that looking at assets makes it possible to distinguish persistent structural poverty 

from poverty that passes naturally with time thanks to the growth process. This second empirical 

current is mainly represented by the works of Carter, Little, Mogues and Negatu (2007), who show 

that the idea of asset-based poverty traps is consistent with the post-shock growth experience in 

Honduras after Hurricane Mitch, and in Ethiopia after the drought of the late 1990s, while also 

providing empirical support for the concept of “asset smoothing” (opposed to the hypothesis of 

consumption smoothing), according to which poorer households with very low assets (typically, 

livestock), choose to voluntarily destabilize consumption not to sell assets and be caught in a poverty 

trap from which it would be almost impossible to recover; Carter and Lybbert (2012), who test the 

two alternative hypothesis of consumption and asset smoothing, and using a panel dataset from West 

Africa they apply threshold estimation techniques which provide support for asset, and not 

consumption, smoothing in response to external shocks; Barrett et al. (2006), who examine welfare 

dynamics in rural Kenya and Madagascar and again, mixing quantitative and qualitative evidence, 

find that poor households defend their critical asset levels through asset smoothing, even if this comes 

at the cost of an immediate reduction in consumption. Finally, Barrett and Swallow (2006) try to 
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unify macro and micro literature on poverty traps by providing the theoretical framework of “fractal 

poverty traps”, in which multiple dynamic equilibria, caused by endogenous and / or exogenous 

conditions, exist simultaneously at multiple scales (micro, meso and macro) and are self-reinforcing 

through feedback effects. 

 

The idea of poverty traps has also been proposed and tested for in the context of the debate on the 

long-run determinants of growth and development. The two main currents in this literature are the 

geography hypothesis, which draws from the hypothesis of environmental determinism put forward 

in Diamond (1999) and Huntington (1922), namely that climate and geography are the fundamental 

drivers of development, and has found qualified empirical support in the works of Alsan (2014), 

Andersen, Dalgaard, and Selaya (2016), Gallup et al. (1999) and Olsson and Hibbs (2005); and the 

institution hypothesis (Acemoglu, Johnson, & Robinson, 2000, 2001; Easterly & Levine, 2003; 

Rodrik, Subramanian, & Trebbi, 2004), which conversely endorses institutional determinism and 

stresses the primacy of institutions over geography as a determinant of long-run growth. As Dell, 

Jones and Olken (2014) observe, the fact that geographic characteristics and institutional quality are 

highly correlated makes it challenging to definitely settle the debate. In this context, Bloom, Canning 

and Sevilla (2003), Bonds, Keenan, Rohani, and Sachs (2010), and Strulik (2008) provide both 

theoretical underpinnings and empirical evidence for the idea of ‘climate-induced’ poverty traps, 

while Tol (2011) explores the long-run mechanisms (diseases, infant mortality, fertility, education) 

through which climate and climate change could widen or deepen poverty traps or even cause 

intergenerational poverty traps. Finally, from a sustainable development perspective, Haider, 

Boonstra, Peterson and Schlüter (2017) review the conceptualizations of poverty traps in different 

disciplines, and call for a more integrated approach capable of accounting for social-ecological 

interactions and feedbacks that generate poverty traps. 

 

This large body of literature notwithstanding, Tol (2015) notes: “The literature on the impact of 

climate (change) on development has yet to reach firm conclusions. Climate change could moderate 

the rate of economic growth, but estimates range from high to low. More people may be trapped in 

poverty because of climate, but this effect could be large or small.” 

 

3 Empirical framework and identification strategy 

 

Our empirical framework belongs to the strand of the literature that looks at growth in developing 

countries by using micro-level data, drawing in particular on the works of Carter, Little, Mogues and 

Negatu (2007); Dercon (2004); Jalan and Ravallion (2002). We assess convergence by using a 
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standard empirical growth model, in a framework borrowed from the macro literature (Mankiw, 

Romer & Weil, 1992), where growth rates are assumed to be negatively related to the initial income 

levels: 

 

(1)    𝑙𝑛 𝑌𝑖𝑡 − 𝑙𝑛 𝑌𝑖𝑡−1 =  𝛼𝑙𝑛 𝑌𝑖𝑡−1 + 𝛽∆𝑇𝑒𝑚𝑝𝑔𝑡 + 𝛾∆𝑃𝑟𝑒𝑔𝑡 +  𝛺𝑍𝑖𝑡 +  𝜔𝑋𝑖𝑡  +  𝜇𝑖 + 𝑞𝑖𝑡 + 𝑤𝑡 +  𝜃𝑟𝑡 + 𝜀𝑖𝑡    

 

In this equation, the left-hand side variable is the annualised growth rate in annual household per 

adult-equivalent4  consumption between t and t-1, and 𝑙𝑛 𝑌𝑖𝑡−1  is household per adult-equivalent 

lagged consumption5. The coefficient 𝛼, if negative and statistically significant, would indicate, on 

average, convergence among households.  

 

In all our specifications, Yit  either denotes food consumption or total consumption.  

The reason why we use two different dependent variables is that looking only at food consumption 

growth one may confound the impact of weather shocks with the effects of relative price changes. In 

fact, due to changes in the ratio between food vs non-food prices, food consumption may follow a 

different growth path from total consumption. While Dercon (2004), due to lack of data availability 

for non-food expenditure, had to largely limit his analysis to food consumption growth, we employ 

both to address this concern. 

The inclusion of lagged consumption level as an independent regressor may raise concerns about 

endogeneity. However, endogeneity tests, based on the difference of two Sargan-Hansen statistics – 

one for the equation with the smaller set of instruments, where lagged consumption is treated as 

endogenous and instrumented with asset and education levels at t-1, and one for the equation with the 

larger set of instruments, where lagged consumption is treated as exogenous – do not reject the 

assumption of exogeneity of this variable (see Table A.1). Furthermore, the core findings do not 

change when we use other estimation methods (see Section 6) which treat lagged consumption level 

as endogenous. 

 

This basic empirical growth model is augmented to investigate the potential impacts of weather 

shocks. ∆𝑇𝑒𝑚𝑝𝑔𝑡 and ∆𝑃𝑟𝑒𝑔𝑡 are temperature and precipitation shocks, where ‘shocks’ mean 

                                                             
4 We use an adult-equivalent scale that was already included in the dataset instead of a per capita measure, since per capita 

measures would underestimate the welfare of households with children with respect to families with no children, and the 

welfare of large households with respect to small households, as stressed in the Basic Information Document of the 

original LSMS-ISA surveys. Basic Information Documents for the surveys are available at the following link: 

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~

pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html 
5 Given the household fixed-effects model, we could not include initial consumption levels because they are time-

invariant. Hence the choice of including lagged levels, which in a panel with only three waves is in practice very similar. 

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html
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‘anomalies’ in the sense defined by Dell, Jones and Olken (2014), i.e. our weather variables are 

calculated as the level difference between their average values in the period between interviews and 

the long-run means, divided by the long-run standard deviation6. This means we assume that level 

changes matter not only in an absolute sense but also, more importantly, in terms of deviation from 

their long-run averages. Given we have a short-run panel and only limited climatic variation, this 

choice of the weather functional form suits better the nature of our data.  

A common practice in the development literature on the relationship between growth and shocks is 

the fact almost all these works only include rainfall shocks in the empirical analysis, neglecting the 

potential role of temperature as a determinant of household growth. Indeed, climate literature 

(Auffhammer, Hsiang, Schlenker, & Sobel, 2013; Dell, Jones, & Olken, 2014) has warned against 

the risk of omitted variable bias when dealing with the effects of weather regressors, and recommends 

to always include at least both temperature and precipitation as independent variables. Since the two 

are closely correlated, excluding temperature, as commonly done in many empirical development 

works, may mean attributing to precipitation shocks an impact which could be actually due to 

temperature. We avoid this risk by including both. 

To capture potential heterogeneity of impacts, we also interact weather shocks with dummies for 

being “poor” and for living in “hot” areas, as well as with dummies for initial consumption quartiles, 

following Carter, Little, Mogues and Negatu (2007)7. 

 

Other than weather shocks, we include two sets of control variables. 𝑍𝑖𝑡 is a vegetation time series 

which includes variables providing data on the start of the wettest quarter, average changes in 

greenness, and onsets of greenness increase and decrease. These vegetation variables were already 

included in the original World Bank data as part of the Integrated Survey on Agriculture (ISA); we 

chose to add them in the regression following the advice in Auffhammer, Hsiang, Schlenker and 

Sobel (2013) and Dell, Jones and Olken (2014): it is important to include a rich set of climatic 

variables in the regression (when available), given the risk of omitted variable bias due to the fact 

climatic variables are always highly correlated. 

𝑋𝑖𝑡 are household controls, which include household size, the square of household size, the age of the 

household head and its squared term, a dummy for the gender of the household head, average years 

                                                             
6 The subscript g indicates temperature and precipitation variabes are observed at the grid level. 
7  Incidentally, we considered the possibility of a quantile regression model as an alternative and complementary 

specification, but we ruled out this option because when quantile regression is combined with panel data and a fixed-

effect setting, identification and estimation become complicated, since the quantiles of the difference are not equal to the 

difference in quantiles (Ponomareva, 2010), and interpretation of the coefficient of the treatment variable is altered 

(Powell, 2016). Estimation gets even worse in case of dynamic models and a small number of time periods, which entail 

even greater bias (Galvao, 2011; Koenker, 2004). Although some estimators have been proposed to deal with these issues 

(Galvao, 2011; Powell, 2016), there is not yet an established consensus in literature and empirical applications are rare. 
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of education among adults, the number of infants (i.e. less than 5-year old) and dummies capturing a 

variety of self-reported shocks, both idiosyncratic (illness and deaths of household members) and 

covariate (e.g. market) shocks. The inclusion of control variables reduces the risk of omitted variable 

bias and provides smaller standard errors in the estimates. 

 

As for the other elements in the equation, 𝜇𝑖 are household fixed effects; 𝑞𝑖𝑡  are quarter of year 

dummies to capture when the interview took place; 𝑤𝑡 are wave dummies; 𝜃𝑟𝑡 are region-year fixed 

effects, to allow for differentiated time trends in different regions and capture idiosyncratic local 

shocks, as suggested by Dell, Jones and Olken (2012); 𝜀𝑖𝑡 are error terms clustered simultaneously at 

the Enumeration Areas (EAs) and wave levels, following the two-way clustering recommended by 

Cameron, Gelbach and Miller (2011). EAs are the main stratification level in the NPS surveys and 

also the closest unit to the grid level where temperature and precipitation are observed; furthermore, 

in most rural areas, EAs are defined by village boundaries8. 

 

After finding heterogeneity, we try to detect a critical consumption threshold for the significance of 

temperature impacts. In order to do so, we employed the Hansen (2000) threshold estimator following the 

approach by Carter, Little, Mogues and Newatu (2007). This model distinguishes two impact regimes 

conditional to a critical value of lagged (pre-shock) consumption level: 

 

(2)    𝑙𝑛 𝑌𝑖𝑡 − 𝑙𝑛 𝑌𝑖𝑡−1 = {   
𝛼𝑙𝑛 𝑌𝑖𝑡−1 + 𝛽𝑙∆𝑇𝑒𝑚𝑝𝑔𝑡 + 𝛾∆𝑃𝑟𝑒𝑔𝑡 +  𝛺𝑍𝑖𝑡 +  𝜔𝑋𝑖𝑡  +  𝜇𝑖 + 𝑞𝑖𝑡 + 𝑤𝑡 + 𝜃𝑟𝑡 + 𝜀𝑖𝑡      𝑖𝑓 𝑙𝑛 𝑌𝑖𝑡−1 ≤ 𝜎

𝛼𝑙𝑛 𝑌𝑖𝑡−1 + 𝛽𝑢∆𝑇𝑒𝑚𝑝𝑔𝑡 + 𝛾∆𝑃𝑟𝑒𝑔𝑡 +  𝛺𝑍𝑖𝑡 +  𝜔𝑋𝑖𝑡  +  𝜇𝑖 + 𝑞𝑖𝑡 + 𝑤𝑡 +  𝜃𝑟𝑡 + 𝜀𝑖𝑡      𝑖𝑓 𝑙𝑛 𝑌𝑖𝑡−1 > 𝜎
 

 

Where the superscripts l and u on the coefficient 𝛽 indicate, respectively, the lower and upper regime 

of temperature impacts, conditional on a given threshold 𝜎 of lagged consumption level. 

 

4 Data and descriptive statistics 

 

The data used in this work are taken from two different sources. 

 

Household data 

 

Household data come from the Tanzania National Panel Surveys, part of the World Bank collection 

of household surveys known as Living Standards Measurement Study – Integrated Survey on 

Agriculture (LSMS – ISA). In particular, this panel consists of three surveys: 2008 – 2009; 2010-

                                                             
8 In their works on Tanzania, Hirvonen (2016) clusters standard errors at the village level, Bengtsson (2010) at the 

"cluster"-level, i.e. the main stratification unit and the level at which rainfall is observed. Given the absence of village 

location data due to confidentiality reasons, EA coordinates were the most appropriate choice for the clustering level. 
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2011; 2012-2013 9 . These three surveys have been cleaned and aggregated using household 

identification numbers to build a three-round panel. All the monetary values in the surveys have been 

deflated, in order to convert nominal values in real/constant values, using the Consumer Price Index 

(CPI) for Tanzania by the World Bank10,  and they are expressed in Tanzanian shillings at 2013 

monetary values. Importantly, we only selected rural households in building the panel, dropping 

urban households for which confounding factors would have been more likely. After cleaning the 

data, we are left with a balanced panel of 1,585 georeferenced households. This panel includes data 

on household and, as part of the ISA questionnaire, vegetation time series and geographic variables, 

as well as data on crops and agriculture.  

Finally, data on the monetary value of total crop production and other agricultural characteristics used 

in Section 5 have been developed by the FAO Rural Income Generating Activities (RIGA) Team 

starting from the household data contained in the survey questionnaires. 

 

Weather data 

 

Weather data are taken from NASA’s Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2), which is a global, gridded data set based on retrospective 

analysis of historical weather data obtained from satellite images and weather stations (Rienecker et 

al., 2011). The dataset provides daily temperature measures aggregated into grids that are 1/2° in 

latitude x 2/ 3° in longitude (which corresponds roughly to 55 km x 75 km at the equator). As with 

all re-analysis products, the data set is a combination of observed and imputed data points, using 

observation where and when available, and physics-based interpolation where and when needed. 

We aggregated in two ways. First, we computed long-run averages over the period 1980 – 2015. 

Second, we built average measures of weather variability during the period between interviews for 

each household. However, to better catch the weather conditions during the growing season, as 

suggested by Hirvonen (2016), we chose to exclude the summer months from the computations of 

both averages (namely, June, July, August and September)11. 

Hence, temperature at time t is average monthly growing season temperature in the period between t 

and t-1, expressed in degree Celsius. Precipitation at time t, instead, is calculated as average monthly 

growing season precipitation (in millimetres) in the period between t and t-1. Long-run average 

                                                             
9 These data are available at: 

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~

pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html 
10 http://data.worldbank.org/indicator/FP.CPI.TOTL?page=1 
11 See http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/TanzaniaTanzania.lowres.report.pdf, 

where it is stated that “the ‘short’ rains [take place] in October to December and the long rains in March to May, whilst 

the southern, western and central parts of the country experience one wet season that continues October through April or 

May”. In this way, given the intrinsic difficulty in exactly identifying rainy seasons months for households scattered 

across the whole country, we excluded the summer months which are never part of any rainy season in Tanzania.  

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23635561~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html
http://data.worldbank.org/indicator/FP.CPI.TOTL?page=1
http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/TanzaniaTanzania.lowres.report.pdf
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temperature and precipitation represent respectively long-run average monthly growing season 

temperature and long-run average monthly growing season precipitation. Finally, as already specified 

above, temperature and precipitation shocks (or anomalies) at time t are defined as the level difference 

between their values at t and their long-run averages, divided by the long-run standard deviation. 

We used latitude and longitude coordinates to link these gridded weather data to household data. 

Unfortunately, for confidentiality reasons we did not have access to the exact location of households, 

but only to the average of household GPS coordinates in each enumeration area (EA), for which a 

random offset within a 5-km range was applied for rural households. Such an offset range, anyway, 

is not an issue of concern for us given the medium resolution of our weather data. 

Furthermore, given the risk of incorrect inference when dealing with historical weather data, 

emphasized by Auffhammer et al. (2013), as a robustness check we also run a sensitivity analysis for 

our results by using a different source of weather data, where temperature data come from the CRUCY 

Version 3.23 by the Climatic Research Unit (CRU) of the University of East Anglia (CRU, 2016), 

and have a resolution of 1/2° in latitude x 1/2° in longitude, and rainfall data come from the same 

NPS Dataset as part of the ISA module, and they contain data on total rainfall in the wettest quarter 

within 12-month periods starting in July previous to each round. 

 

Descriptive statistics 

 

Table 1 provides descriptive statistics for the main variables employed in the empirical analysis. 

Annualised average total and food consumption growth rates are both negative: they decreased on 

average by about 1.4 and 1.7 percentage points each year. However, the standard deviation is large 

for both variables, indicating heterogeneity in the growth paths experienced by rural households. Both 

temperature and precipitation anomalies were, on average, positive in the timespan considered, but 

for them as well it is worth noting the huge standard deviation, suggesting substantial heterogeneity 

in the weather conditions experienced by households living in different geographical areas. 

 

5 Regression results 

 

Tables 2 and 3 report the results from estimating Equation (1). First, the hypothesis of convergence 

among households is confirmed: growth rates are negatively related to ‘initial’ consumption levels, 

i.e. poorer household grow faster. As for the weather variables, Column 1 shows that, on average and 

ceteris paribus, temperature (precipitation) shocks have a slightly negative (positive) but not 

significant impact on growth. 

Column 2 controls for heterogeneity of impacts, by interacting both temperature and precipitation 

with a dummy for being “poor”, i.e. a dummy with value 1 for households with below median initial 
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food (in Table 2) or total consumption (in Table 3). Defining a household as “poor” is of course a 

relative concept in a context like rural Tanzania. We check for heterogeneity of impacts with respect 

to the poorest amongst the poor. Including these interactions qualitatively changes the results: 

temperature shocks now have a positive and weakly significant impact for the “non-poor” households, 

but a large, negative and significant (at the 5 percent level) impact on household growth for “poor” 

households, and this holds for both dependent variables (food and total consumption growth). 

Interpreting these results with respect to the within-standard deviation of temperature shocks (0.237), 

one standard deviation increase in temperature anomalies decreases household per-adult equivalent 

food consumption growth by about 2.76 %, and household per-adult equivalent total consumption 

growth by approximately 2.21 %, ceteris paribus, for households defined as “poor”. Rainfall impacts 

are insignificant. Given the presence of heterogeneity with respect to initial consumption, in Column 

3 we also check for heterogeneity by interacting shocks with a dummy for living in “hot” areas, which 

takes value 1 for households living in an area with above mean long-run average monthly growing 

season temperature. Although the interaction between temperature shocks and the dummy for “poor” 

households stays unchanged in sign, magnitude and significance, the total effect of temperature 

shocks on poorest households is now slightly smaller and less significant. The interaction between 

temperature shocks and a dummy for households living in hotter areas is small and negligible, and so 

the total effect. Living in a hot area has a positive (and significant, but only in Table 3) impact on 

growth, but this is very likely due to the fact the hottest areas in Tanzania (coastal regions and 

Zanzibar) are also the richest ones. Temperature impacts on growth are always larger on food 

consumption growth than on total consumption growth, consistently with the fact that most 

households are subsistence farming households. This will be additionally addressed in Section 7, 

where the channels of the heterogeneity will be investigated. 

Finally, Column 4 in both Tables 2 and 3 explores more in detail the relationship between 

consumption levels, temperature shocks and their impact on growth, by interacting the lagged 

consumption term (food consumption in Table 2, total consumption in Table 3) with temperature 

shocks. The results are consistent with the previous findings: the process of convergence is unaltered, 

the coefficient for temperature shocks is negative and statistically significant, the interaction between 

lagged consumption and temperature shocks is positive and statistically significant at the 1 percent 

level, suggesting that the impacts from temperature shocks tend to decrease as households grow 

richer. Figures 1 and 2 show the implications of the results in Column 4 for, respectively, Table 3 and 

4. They show the marginal effect of temperature shocks at different lagged consumption levels. When 

households have a sufficiently high level of pre-shock consumption, impacts from temperature shocks 

turn first zero and then eventually positive. 

Tables 4 and 5 take a closer look, by interacting weather shocks not with a dummy for being “poor”, 
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but with dummies for initial consumption quartiles. The results, consistent between tables, reveal 

even further heterogeneity: as can be seen in Column 1 of both tables, households belonging to the 

poorest initial quartile suffer from a large, negative and statistically significant impact of temperature 

shocks, while the second and third quartiles do not, and growth for households in the upper initial 

quartile is positively and significantly affected, revealing heterogeneity in sign rather than size. 

This core finding is not altered when including the interaction for living in an “hot” area, as shown in 

Column 2 of both tables. Finally, impacts due to precipitation shocks are always insignificant. 

In sum, depending on initial conditions, the impacts of temperature shocks on household growth is 

sharply heterogeneous across quartiles, and poorest households are the only ones to be significantly 

and negatively affected. 

This contrasts with the implications of the negative and significant coefficient of the lagged 

consumption term: while there seems to be an ongoing process of convergence among households, 

temperature shocks go in the opposite direction, slowing growth of the poorest households while 

bolstering growth for the richest ones.  

 

However, we have not precisely identified thresholds of consumption that entail regime changes for 

temperature shocks. We just interacted shocks with arbitrary dummies that capture heterogeneity, but 

these choices are arbitrary. They are not driven by the data. 

To overcome this drawback, following Carter, Little, Mogues and Negatu (2007), we present the 

results for a panel threshold model using the so-called Hansen (2000) estimator, as implemented in a 

fixed-effect setting by Wang (2015). 

Threshold models identify structural breaks in the relationship between variables. In our context, we 

are looking for thresholds of pre-shock consumption above or below which there is a structural break 

in the impact of temperature shocks, as illustrated in Equation (2). 

Temperature shocks are the regime-dependent variable. 

Looking at the previous regressions, it appears there is not just one threshold, but two separate and 

distinct thresholds. The first is the threshold above which impacts turn negative but statistically 

insignificant; the second the one above which impacts turn positive and significant. We are therefore 

looking for two, and not just one, consumption level thresholds. 

In Table 6 we present the results for this double threshold model using the Hansen estimator. 

In Column 1 the dependent variable is food consumption growth, in Column 2 total consumption 

growth. As hypothesized, we find two thresholds and three regimes: a first threshold below which 

impacts of temperature shocks are negative and strongly significant, and above which they turn 

insignificant; and a second threshold from which impacts turn to being positive and strongly 

significant. Although the positive impact above the upper threshold is much bigger than the negative 
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impact below the lower threshold, the percentage of observations falling below the lower threshold 

is much higher (47 % and 24 %, respectively, for food and total consumption) than the percentage of 

observations above the upper threshold (around 13 % in both cases), revealing it is a smaller group 

of better-off households that drives the significance of the positive impact for the upper quartile. 

Furthermore, the significance of this positive impact will prove to be sensitive to specification and 

not supported by evidence on the transmission channels (see Sections 6 and 7). 

Both thresholds, for both dependent variables, are statistically significant at the 1 percent level, as 

reported in the threshold tests. 

After re-converting logs into monetary values, for food consumption we find a lower threshold of 

approximately 483594 Tanzanian shillings or, expressed at 2013 Purchasing Power Parity (PPP) 

values12, 803 dollars; and an upper threshold of approximately 917126 Tanzanian shillings, i.e. about 

1523 dollars; for total consumption, instead, the two thresholds are approximately 2434956 

Tanzanian shillings, approximately 723 dollars, and 1219559 Tanzanian shillings, or about 2026 

dollars. 

 

Temperature shocks, in sum, slow convergence, and may even cause divergence. This has strong 

distributional implications and raises the issue of which channels and transmission mechanisms could 

be responsible for such a sharp heterogeneity of impacts. These questions are addressed in Section 7 

but, first, Section 6 conducts a number of tests to assess the robustness of our results to different 

sensitivity analyses, and make sure our findings are not driven by the chosen identification strategy 

or by properties of the data used. 

 

6 Robustness checks 

 

We explore the robustness of our results with respect to spatial autocorrelation, different weather data 

and different estimation strategies. 

 

A. Conley (1999) standard errors 

 

It is well known that both economic growth and temperature are spatially autocorrelated. One could 

thus argue that confidence in our results are inflated because we fail to take this into account. We 

therefore re-run the quartile regressions from Tables 4 and 5 correcting for Conley (1999) standard 

errors, which are robust to both spatial autocorrelation and heteroskedasticity. The computation of 

the Conley standard errors is based on a weighing matrix that places greater weight on observations 

that are closer to each other, and the weights decay to zero after a pre-specified distance cut-off is 

                                                             
12 For the PPP conversion factor in 2013: https://data.worldbank.org/indicator/PA.NUS.PPP?locations=TZ . 

https://data.worldbank.org/indicator/PA.NUS.PPP?locations=TZ
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met. We use the following cut-off points: 50, 75 and 100 km. These regressions are reported in Table 

A.2 in the Appendix: in Column 1 the dependent variable is food consumption growth, in Column 2 

is total consumption growth. The core results are basically unchanged: our findings are not weakened 

when correcting for spatial autocorrelation and spatially-robust standard errors. 

 

B. Different weather data 

 

Results could be driven by properties of the weather data, the selection of weather stations, the 

homogenization of the data, and the imputation of missing observations. Auffhammer et al. (2013) 

highlight the risk of using reanalysis data, since reanalysis is conducted with models that, like 

economic models, are imperfect and contain systematic biases. Moreover, they recommend to always 

check that results also hold when using a different data source. 

For temperature data, we use the CRUCY Version 3.23 by the Climatic Research Unit (CRU) of the 

University of East Anglia (CRU, 2016), a gridded dataset which has a resolution of 1/2° in latitude x 

1/2° in longitude. While the MERRA-2 Reanalysis data combine information from ground stations, 

satellites, and other sources with a physical climate model to create gridded weather data products, 

CRU data are gridded data, statistically interpolated from ground stations (Dell, Jones and Olken, 

2014). Table A.3 in the Appendix provides descriptive statistics for the CRU temperature data. 

∆Temp is on average almost 5 times bigger compared to average temperature shocks in Table 1. 

Despite this, the correlation between the two temperature series is more than 90 %. 

As for rainfall, we use precipitation data that come from the NPS Dataset as part of the ISA module, 

and our variable is now average total rainfall in the wettest quarter before the interview. These data 

were taken from the NOAA datasets on African Rainfall Climatology (ARC) data. ARC data blend 

rain gauge measurements and InfraRed (IR) satellite information to render a daily, high resolution 

(0.1°x0.1°) gridded estimate covering the Africa continent.13 Since data on the long-run standard 

deviation are not included, we simply define rainfall shocks as level differences from the long-run 

average. The results are reported in Table A.4 in the Appendix. The pattern of heterogeneity holds, 

and the effect size is similar, both for the negative impacts on households belonging to the poorest 

quartile and for the positive impacts for households belonging to the richest quartile. Precipitation 

shocks are now often significant, and seem to point to heterogeneity as well, but they are also quite 

sensitive to specification, and since we detect no significant precipitation impacts on crop yields using 

the same data source (see Section 7), we conclude their significance here is likely incidental. 

In sum, our main findings hold when using a different source of weather data. 

 

                                                             
13 Data can be found at: ftp://ftp.cpc.ncep.noaa.gov/fews/newalgo_est_dekad/ . 

ftp://ftp.cpc.ncep.noaa.gov/fews/newalgo_est_dekad/
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C. Hausman – Taylor regressions 

 

Following Dercon (2004), we repeat our empirical analysis using the Hausman - Taylor (1981) model, 

which involves partitioning the time-invariant and time-varying vector of variables in two groups 

each, of which one group of variables is assumed to be uncorrelated with the fixed effect.  

The Hausman-Taylor model, being a random-effect model for panel data allows us to include time-

invariant variables in our regressions, thus extending identification beyond the within-household 

intertemporal variation. In particular, in addition to region dummies14, we add distance to the nearest 

major road and long-run averages for our weather variables. Given the strong partitioning 

assumptions implied by this estimation strategy, we adopt a cautious approach, following Dercon 

(2004): lagged consumption terms and all household controls (with the exception of self-reported 

covariate shocks) are treated as time-varying endogenous variables; dummies for consumption 

quartiles are treated as time-invariant endogenous; all weather and geographic variables, both time-

varying and time-invariant, are treated as exogenous. 

Results can be found in Table A.5 for food consumption growth (Column 1) and total consumption 

growth (Column 2)15. Despite stark differences between estimation strategies, the overall picture is 

consistent with the results from the fixed-effect specification: the convergence process is confirmed, 

and temperature shocks only harm poorest households, although here also the second poorest quartile 

is negatively and significantly affected. Interestingly, while the coefficient for the upper quartile is 

still positive, its magnitude has decreased and its significance has disappeared in Column (1) and 

diminished in Column (2). This will be further addressed in the next robustness check. As above, 

there is no statistically discernible effect of rainfall shocks, while both long-run temperature and 

precipitation have a positive impact on both food and total consumption growth. 

 

D. Two-Step Difference GMM 

 

As a third, and last, estimation strategy we employ the two-step difference GMM, first proposed by 

Arellano and Bond (1991). This estimation method controls for the dynamic panel bias due to the 

presence of the lagged dependent variable and is especially recommended for dynamic panels which 

exhibit the following characteristics (Roodman, 2006): “1) “small T, large N” panels, meaning few 

time periods and many individuals; 2) a linear functional relationship; 3) one left-hand-side variable 

that is dynamic, depending on its own past realizations; 4) independent variables that are not strictly 

                                                             
14 Region dummies were included separately from year dummies because the estimation of Hausman-Taylor regressions 

requires the presence of time-invariant exogenous variables. 
15 Incidentally, although not reported in Table 7, distance from the nearest major road always has a large and significant 

effect on growth, consistently with what found by Dercon (2004) in rural Ethiopia, hinting at public infrastructure as 

another source of divergence among households. 
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exogenous, meaning they are correlated with past and possibly current realizations of the error; 5) 

fixed individual effects; and 6) heteroskedasticity and autocorrelation within individuals but not 

across them”. Arellano–Bond estimation transforms all regressors by differencing, and uses the 

generalized method of moments (GMM) as the estimation method. Importantly, it adjusts for the 

potential bias caused by the inclusion of a lagged dependent variable as a regressor. The Hansen-J 

tests reported ensure the specification is valid, and the standard errors are corrected using Windmeijer 

(2005) adjustment procedure. In distinguishing between endogenous and exogenous variables, we 

followed Dercon (2004) and Jalan and Ravallion (2002): lagged consumption terms and all household 

controls are treated as endogenous, and weather shocks and vegetation time series as exogenous. 

The results for the two-step Arellano-Bond GMM estimation are reported in Table A.6. 

They are consistent with the fixed-effect and Hausman-Taylor regressions discussed above: 

heterogeneity of impacts from temperature shocks is confirmed, with a strong and significant impact 

only for households belonging to the poorest initial quartile. Similarly to the Hausman-Taylor model, 

temperature impacts for households in the richest quartiles are still positive, but much smaller and 

not significant anymore. This means that the significance of the positive impact detected using the 

fixed-effect model is not robust to different estimation strategies, and should be interpreted with 

extreme caution. Finally, precipitation is insignificant. 

 

7 Transmission channels and mechanisms 

 

Having demonstrated robustness, we now explore why there is such a sharp heterogeneity of impacts 

and perhaps even a change in sign of impacts on household growth depending on initial consumption. 

We shed light on this question by investigating four main channels: health expenditure, labour 

productivity, agricultural yields, and asset-smoothing. 

 

A. Health expenditure 

 

There is a large body of literature on the impacts of extreme temperature and heat waves on health 

and mortality (see Section 2). In our context, it could be temperature shocks on consumption growth 

appear, at least partially, through the health channel: temperature could affect health and hence 

productivity, and this in turns may affect income and subsequently consumption. 

We test this mechanism by using the baseline specification set out in Equation (1) with a different 

dependent variable: instead of consumption growth, we now use as 𝑌𝑖𝑡  the ratio between health 

expenditure and total expenditure16. The expected sign of the relationship is the opposite: in response 

                                                             
16 To calculate the growth rate of this ratio, we increased both per a.e. health and total expenditures by the same small 

increment (the equivalent of a US dollar) for all households. 
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to temperature shocks, the growth rate of the ratio should increase. Table 7, Column 1 partially 

supports our hypothesis: temperature shocks have a positive (but not significant) impact on the growth 

rate of the health expenditure / total expenditure ratio. Furthermore, to justify the pattern of 

heterogeneity, one would expect this ratio to increase significantly more for households belonging to 

the poorest quartile. As reported in Column 2, this is not the case: the impact is small and insignificant 

for all quartiles, and the sign is not the expected one. Hence, either the health channel is not 

responsible for the heterogeneity we find, or there is a transmission mechanism which is ongoing but 

cannot be caught given the limitations and short-run nature of our data. Column 3 shows that living 

in a hot area has a large, positive and significant effect on the growth rate of the ratio of health to total 

expenditure. In other words, if the weather is anomalously hot, people spend more on health care. 

 

B. Labour productivity 

 

As reviewed above, labour productivity is affected by weather anomalies. 

In a context like rural Tanzania, a large share of workers is involved in outdoor work, primarily in 

farming. Outdoor work is more exposed to heat waves, and agriculture in Tanzania is still largely 

traditional and thus still involves a lot of manual labour. These characteristics make workers in rural 

areas vulnerable to stress from temperature shocks, but there could also be significant differences in 

farmers’ characteristics that entail heterogeneity. Labour productivity may thus help explaining the 

heterogeneous impacts on consumption growth. 

We created a rough measure of agricultural labour productivity by dividing the monetary value of 

household total crop production (taken from the FAO Rural Income Generating Activities (RIGA) 

Team Database17) in the 12 months before the interview by the number of family members engaged 

in agricultural activities in the 12 months before the interview. We are aware this measure represents 

a rough and only approximate proxy of (agricultural) labour productivity, stemming from one of the 

more general definitions of labour productivity as the ratio between total output and number of 

employed persons, but it is also the only one that we could get18. Consequently, our left-hand side 

variable is the growth rate of (agricultural) labour productivity between t and t-119. Analogously to 

Equation (1), we regress this dependent variable on lagged agricultural labour productivity, 

temperature and precipitation shocks as well as controls and fixed effects. Since preliminary 

endogeneity tests (see Table A.7) did not reject the assumption of exogeneity of the lagged dependent 

variable, the model was estimated using two-step difference GMM. 

                                                             
17 The FAO-RIGA Database can be found at:  http://www.fao.org/economic/riga/riga-database/en/. 
18 Another shortcoming is that we only investigate the aggregate impact, without disentangling the impacts between labour 

supply and labour demand. Unfortunately, such refinements go beyond the limitations of our data. 
19 We added a small amount (the equivalent of a US dollar) to labour productivity values of all households not to lose 

observations with zeros when calculating growth rates. 

http://www.fao.org/economic/riga/riga-database/en/
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Results are reported in Table 8. Column 1 shows average impacts. Temperature anomalies have a 

large and significant impact on the growth rate agricultural labour productivity. One within-standard 

deviation increase in temperature shocks decreases agricultural labour productivity growth by 

approximately 5.61 %, on average, ceteris paribus. Column 2 disentangles this aggregate impact 

across initial consumption quartiles: there is a large and significant negative effect on the poorest 

quartile, while impacts are negative but not significant for the other quartiles. Precipitation shocks 

are insignificant. This overall picture is consistent with the consumption growth regressions, and 

confirms labour productivity as one of the transmission channels responsible for the heterogeneity of 

impacts, but not for the sign change. 

Why is there such a discrepancy of impacts on agricultural labour productivity growth across 

quartiles? Tables A.8 reports some descriptive statistics that can help clarifying this issue. It shows 

the average Agricultural Wealth Index for the four initial consumption quartiles. The Agricultural 

Wealth Index was again taken from the FAO-RIGA Database, and is a specific aggregated index 

based on a factor analysis of the agricultural assets and technologies used by rural households in the 

sample. In this context this is useful because it also proxies for the use of technologies that decrease 

the need for manual labour. The average index is more than three times higher for the upper quartile 

compared to the poorest quartile, although oddly very low for the third quartile . 

Additionally, Table A.9 reports the percentage of households, across quartiles, for which farming was 

not the main source of income in at least two waves. According to our hypothesis above, the less 

households depend on farming activities, the less they work outdoors, and the lower the impact on 

labour productivity. Farming was the main source of income for about 81% of households in the 

poorest quartile. This share falls and, for the richest quartile, two-thirds of households depend on 

farming as the main source of income. This further enhances the influence of weather variability on 

the labour productivity of poorest households compared to that of the wealthier households. 

Aware of the limitations of our labour productivity measure, we find an heterogenous impact on the 

growth rate agricultural labour productivity, which partially explains heterogeneity of impacts on 

consumption growth. This impact on labour productivity may have directly affected income or also 

entailed an indirect effect through crop yields, as Sudarshan & Tewari (2013) hypothesize: “Observed 

productivity losses in agriculture that have been attributed by default to plant growth responses to 

high temperatures may in fact be partly driven by lower labor productivity”. Of course, the opposite 

may also be true: impacts on agricultural labour productivity may be driven by losses in crop yields. 

 

C. Crop yields 

 

Following the vast literature on the impacts of temperature on crop productivity (see Section 2), we 

investigate the agricultural yield channel to explain heterogeneity of impacts on consumption growth. 
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Crop yields are defined as quantity produced (in kilograms) divided per hectare of cultivated land. 

Thanks to the ISA module in the original dataset, we had access to crop data for the two rainy seasons 

(long and short) preceding the interview month. In investigating the impacts of weather shocks on 

crops, we must also take into account the possibility of non-linear effects, given the apparent inverted-

U and non-linear relationship between temperature and plant growth (Dell et al., 2014; Hirvonen, 

2016; Schlenker & Roberts, 2009). In order to do so, we draw from Ahmed et al. (2011), Hirvonen 

(2016), and Rowhani et al. (2011) works on Tanzania and adopt a specific temperature measure, the 

number of growing degree days (GDDs) (Schlenker & Roberts, 2009) in the twelve months preceding 

the interview month. Following the procedure implemented by Hirvonen (2016), we took daily 

minimum and maximum temperatures from the MERRA-2 data and approximated the diurnal 

temperature distribution by interpolating between the minimum and maximum temperature values 

using a sinusoidal curve. Growing degree days are then measured by the time of exposure to a certain 

temperature range. As in Hirvonen (2016), we set the lower bound to 8°C and the upper bound to 

34°C. Exposure to temperatures above 34°C is considered harmful for agricultural yields20. In our 

regressions we use a spline function of the GDD variable. The first part of this variable captures 

temperature exposure between 8-34°C and the second exposure to temperatures above 34°C. We 

included average total precipitation during the two wettest quarters before the interview and its 

squares, using the alternative ARC rainfall data (cf. Tables A.3 and A4), because they use the actual 

household plot location. 

Table 9 reports the results for this specification. The dependent variable is average crop yield during 

the previous two rainy seasons. In Column 1 we only look at the aggregate impact. The estimates 

suggest that it is exposure to extreme temperatures (above 34°C) which is harmful for crop yields. , 

In Column 2 we check whether this negative effect mainly comes through maize and paddy, two of 

the most important crops in the country, as suggested by previous literature on the impacts of 

temperature on crop yields in Tanzania (Ahmed et al. 2011; Rowhani et al., 2011).  

Therefore, we include interactions with a dummy for ‘Maize & paddy non-specializers’, a dummy 

with value 1 for households in which maize and paddy account for less than 50% of total crop 

production in a given wave21. As expected, negative effects on crop yields from extreme temperatures 

are driven by impacts on maize and paddy, and disappear if households are not specialized in the 

cultivation of these two crops. In Column 3 we decompose the aggregate impact of GDDs by looking 

at impacts across initial consumption quartiles. Rainfall impacts are close to zero and insignificant. 

Impacts of GDDs between 8-34°C is essentially zero for all four quartiles. Exposure to extreme 

temperatures (above 34°C) has negative and strongly significant impact on crop yields of households 

                                                             
20 Descriptive statistics on GDDs can be found in the Appendix, Table A.10. 
21 See Table A.11 for descriptive statistics of this dummy. 
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in the poorest quartile, a negative and insignificant impact on crop yields of households in the second 

and third quartiles, and a positive but insignificant impact on crop yields of households in the upper 

quartile. These results are consistent with the pattern of heterogeneity of temperature shocks on 

consumption growth.   

Why are there such big differences in the impacts from extreme temperatures on crop yields across 

quartiles? Table A.12 reveals that richer households produce more crops (Column 1) and have more 

productive plots (Column 2). The heterogeneity of impacts can thus be explained by the fact that 

richer households are advantaged by better agricultural assets, technologies and soil quality, which 

make them less vulnerable to the negative impacts entailed by temperature shocks, which conversely 

have serious welfare consequences for poorest households. 

We have yet to explain the sign change for the upper quartile. The use of irrigation is still very limited 

(Table A.13) and so the use of inorganic fertilizers (Table A.14), but richer households show better 

conditions. Tables A.15-A.18 in the Appendix show data taken from the ISA module on the use of 

‘improved’ seeds for maize and paddy. Improved seeds are more drought-resistant and can mitigate 

the negative impacts of extreme temperatures. Tables A.15 and A.16 show that the use of improved 

maize seeds sharply differ across consumption quartiles. Tables A.17 and A.18 reveal the same 

pattern with regard to the use of improved paddy seeds. 

 

D. Asset smoothing 

 

We have established that the main channels that account for the heterogeneity of impacts on 

consumption growth are agricultural yields and labour productivity. But we did not explain yet why 

households are not smoothing consumption by drawing on their assets. Drawing from previous 

theoretical and empirical literature (Barrett et al., 2006; Barrett & Carter, 2013; Carter & Barrett, 

2006; Carter et al., 2007; Carter & Lybbert, 2012), we test the two alternative hypothesis of 

consumption vs asset smoothing by repeating the baseline specification but using, as an alternative 

dependent variable, asset growth instead of consumption growth. Our measure of assets is Tropical 

Livestock Units (TLUs), again taken from the FAO-RIGA Dataset. Descriptive statistics for TLUs is 

reported in Table A.19: the gap in TLUs per adult-equivalent across quartiles is evident. 

The dependent variable, therefore, is now annualised percentage change in (ln) per a.e. household 

TLUs between t and t-1 22 . Table 10 reports the results. In Column 1 we can see that, while 

convergence among households is confirmed, temperature shocks have, on average, a negative but 

                                                             
22 To calculate asset growth and use logarithms, since many households have no assets at all and this implied the presence 

of many zeroes in the data, we followed the method implemented in Carter, Little, Mogues, and Negatu (2007) and 

increase all livestock assets per adult-equivalent by the same small increment (namely the minimum value in the sample 

above zero). 
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not significant impact on asset growth. In Column 2, where we decompose the impacts by 

consumption quartiles, impacts are always negative but we do not find any significance. 

These findings imply several considerations. First, it was a good choice to look at consumption 

growth instead of asset growth, following the reasoning in Carter, Little, Mogues and Negatu (2007), 

who argued that in the context of weather shocks such as droughts, characterized by a gradual onset 

and a prolonged effect (differently from the immediate disruption entailed by environmental shocks 

such as hurricanes or typhoons), impacts on welfare growth could appear through consumption and 

not through assets. Indeed, had we chosen asset growth as the dependent variable, we would have 

found no impacts at all. Second, poorest households in our sample could be performing asset-

smoothing, i.e. they might be choosing of voluntarily destabilize consumption and hold on to their 

livestock, in order not to sell them and then fall in a poverty trap from which there could be no 

recovery. This is consistent with what Carter, Little, Mogues and Negatu (2007) find for Ethiopia, 

where they note that “poor households seek to defend their assets in the face of successive droughts 

rather than liquidate them and perhaps limit their subsequent chances of recovery.”. Alternatively, 

selling livestock may entail a social stigma. In any case, we are prone to assert that, for the poorest 

households in our sample, asset smoothing is probably taking place, while the choice of using assets 

as buffer stocks, one of the main risk-coping strategy hypothesized in literature, was either not 

adopted or not effective during the survey period (Kazianga & Udry, 2006; Morduch, 1995).  

 

8 Discussion and conclusion 

 

Using the LSMS-ISA Tanzania Panel Surveys by the World Bank, we find a causal relationship 

between temperature shocks, household consumption growth and poverty in rural Tanzania. There is 

heterogeneity of impacts of temperature shocks: household consumption growth is affected only if 

initial consumption levels lie below a critical threshold. This is explained by the impacts of 

temperature anomalies on two interrelated transmission channels: labour productivity and, more 

importantly, crop yields. Richer and poorer households differ not only in that the former have more 

diversified incomes and are less engaged in outdoor farming activities, but also in yields and other 

differences in agricultural characteristics. Such differences among households may also be related to 

ex-ante risk-managing behaviours (Dercon, 2004), e.g. the conservative behaviour of the poorer risk-

averse households that shy away from investing in profitable but risky technologies (such as modern 

agricultural inputs) and stick to low-risk, low-return activities, as indeed Dercon (1996) the case in 

rural Tanzania (Dercon, 1996). Or, poor households lack access to these technologies because of 

credit and liquidity constraints. 

 

Importantly, while the negative effect for households below the lower threshold is robust, the positive 
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impact above the second threshold is not, either in size or significance, across different estimation 

methods such as the Hausman-Taylor random-effect model and two-step difference GMM. 

Furthermore, the analysis of the transmission channels found no evidence of a significantly positive 

impact. While it may be that richest households take advantage from the negative impacts on poorest 

households by earning more from their crops, this explanation is not supported by sufficiently robust 

empirical evidence. In any case, temperature shocks have a heterogeneous ex-post impact which 

slows the process of convergence and enhances inequalities. These micro results are consistent with 

those found on the relationship between growth, temperature shocks and poverty by macro studies 

(Dell, Jones & Olken, 2012; Letta & Tol, 2016).  

 

However, these findings must be interpreted with caution for a number of reasons, the first being the 

nature and limitations of the data. We use a six-year panel with only three rounds, so we can only 

estimate a short-run elasticity between temperature shocks and growth. The difference in mean 

between observed and long-run temperatures is small (cf. Table 1), so our period of study did not see, 

on average, large weather variability. This could explain the absence of a significant average impact. 

Severe droughts may well have much more pervasive consequences. However, even such extreme 

scenarios are unlikely to overturn the core finding that it is the poorest households who suffer more 

from the negative impacts of temperature shocks.  

Second, convergence is a long-run process. Even though we observe convergence in this short-run 

panel, we can only infer about long-run convergence, but not directly test for it. In the future, the 

availability of longer household-level panels for developing countries could alleviate these issues, 

enabling further research to test whether these findings, emerged from short-run elasticities, also hold 

in the medium or long run. External validity is also an issue: weather variations are not climate 

variations: climate change is a long-run phenomenon in which other factors, as intensification of 

impacts, global non-linear effects and adaptation, could completely alter the nature and magnitude of 

the current elasticities (Dell, Jones and Olken 2014). 

 

Third, the consumption thresholds we detected, other than being intrinsically relative and data-driven, 

are not thresholds in the sense of the existence ‘poverty traps’, below which households are 

permanently trapped in low income. Temperature shocks have a diverging effect which enhances 

inequalities and slows the convergence process, but does not reverse it. Making all households reach 

the critical threshold level above which impacts turn insignificant, would make this source of 

divergence disappear. There are no multiple equilibria, but rather different regimes of impacts 

separated by pre-shock consumption thresholds. Rather than a climate-induced poverty trap, whose 

potential existence was the research question at the heart of this work, if anything we could define 
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this relationship a poverty-induced climate trap. 

 

These caveats notwithstanding, we reckon that development and poverty reduction should be key and 

paramount elements of any climate policy, especially in vulnerable contexts like rural Tanzania, and 

that inequality of impacts will be, within countries other than between countries, the first and foremost 

challenge posed by climate change. Extrapolating from weather to climate, such a qualitative finding 

is particularly relevant to climate change policy. Sub-Saharan Africa is one of the most vulnerable 

parts of the world to the threats posed by climate change (IPCC, 2014). The so-called Schelling 

Conjecture (Schelling, 1992 & 1995), i.e. that economic development would reduce vulnerability to 

climate change, and Schelling’s point that the need for greenhouse gas abatement cannot be separated 

from the developing world’s need for immediate development (Schelling, 1997), find empirical 

support in the results of this work. More broadly, these results increase the concerns over the issue of 

the distributional implications of future impacts, because they show that inequalities of impacts hold 

at the micro level as they do at the macro level. If the impacts of temperature shocks decrease as 

households grow richer, growth is the key for rural Tanzanian households: diversifying income 

sources, reducing outdoor work, modernizing agriculture, closing the yield gap and using drought-

resistant seeds would all make households less vulnerable to the negative impacts of weather shocks, 

and less dependent on climate. 
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Table 1 

Descriptive statistics 

Notes:  

 

Food consumption growth rate is the annualised percentage change in household per adult equivalent food consumption 

between t and t-1. Total consumption growth rate is the annualised percentage change in household per adult equivalent 

consumption between t and t-1. Food consumption is household per adult-equivalent food consumption, expressed in 

Tanzanian shillings. Total consumption is household per adult-equivalent total consumption, expressed in Tanzanian 

shillings. ∆Temp is the difference between average monthly growing season temperature in the period between interviews 

and long-run (1980-2015) average monthly growing season temperature, divided by long-run (1980-2015) standard 

deviation, and expressed in degree Celsius. ∆Pre is the difference between average monthly growing season precipitation 

in the period between interviews and long run (1980-2015) average monthly growing season precipitation, divided by 

long-run (1980-2015) standard deviation, expressed in mm. Temp is average monthly growing season temperature in the 

period between interviews. Pre is average monthly growing season precipitation in the period between interviews. Long-

run average temperature is the average monthly growing season temperature over the period 1980-2015, expressed in 

degree Celsius. Long-run average precipitation represents average monthly growing season precipitation over the period 

1980-2015, expressed in mm. Adult education level represents the average years of education among adults, where adult 

means > 15 year old. TLUs are per adult-equivalent. Total crop production is expressed in Tanzanian shillings. 

 

     

 Mean Var sd            Obs 

 

 

Food consumption growth rate 

 

 

-1.696 

 

992.409 

 

31.503 

 

3168 

Total consumption growth rate 

 

-1.441 901.549 30.026 3170 

Food consumption 584138.1 1.37e+11 533314.7 4755 

     

Total consumption 773108.5 2.84e+11 369904.3 4755 

     

△Temp 0.083 0.105 0.324 3170 

 

△Pre 0.051 0.023 0.153 3170 

 

Temp 23.755 7.260 2.694 3170 

 

Pre 117.998 589.714 24.284 3170 

 

Long-run average temperature  

 

23.658 6.924 2.631 4755 

 

Long-run average precipitation 

 

114.747 576.907 24.019 4755 

 

Household size 5.659 10.029 3.167 4755 

 

Number of infants (< 5 years) 

 

0.918 1.147 1.071 4755 

 

Adult education level 

 

4.593 8.338 2.888 4750 

 

Age of the household head 

 

49.615 241.137 15.529 4755 

 

Gender of the household head 

 

0.239 0.182 0.426 4755 

Tropical Livestock Units (TLUs)  0.436 1.328 1.152 3653 

     

Total crop production 843322.4 8.32e+11 912363 3653 
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Table 2 

FE regressions – Food consumption 

Dependent variable:                                   

food consumption growth rate 

 

(1) 

 

(2) 

 

(3) 

 

(4) 
     

L1.Food       -72.965***      -75.796***      -75.808***      -74.281*** 

 (1.219) (1.299) (1.304) 
 

(1.326) 

∆Temp -1.895 

(4.750)                                   

  9.925* 

(5.332) 

    11.093** 

(5.449) 

     -338.600*** 

(44.868) 

 

Poor x ∆Temp 
  

     -21.588*** 

(4.537) 

 

     -21.460*** 

(4.541) 

 

 

Hot x ∆Temp 
   

-2.653      

   (3.718) 
  

 

∆Pre 
0.839 

(6.673) 

3.259 

(8.386) 

2.113 

(9.339) 
 

-4.941 

(6.622) 

Poor x ∆Pre  -8.758 -8.482  

  (9.620) (9.673) 
 

 

Hot x ∆Pre   2.127  
 

 

Hot  

  (10.264) 
 

  4.032 

(3.689 

      

L1.Food x ∆Temp          25.713*** 

    (3.438) 

Obs 3,164 3,164 3,164 3,164 

Adj. R2 0.831 0.835 0.835 0.841 

Vegetation time series Yes Yes Yes Yes 

Household controls Yes Yes Yes Yes 
 

Total temperature effect for poorest 

households 
 

Total temperature effect for 

households in hot areas 
 

Total temperature effect for poorest 

households in hot areas 
 

Total precipitation effect for poorest 

households 
 

Total precipitation effect for 

households in hot areas 

  

   -11.663** 

(5.091) 
 

 

 
 

 
 

 

         -5.499 

(7.742) 

 

  -10.366* 

(5.308) 
 

 8.441 

(5.748) 
 

    -13.019** 

(5.482) 
 

-6.329 

 (8.387) 
 

4.240 

 (10.401) 

 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time series includes 

data on changes in crop greenness within growing season and onset of greenness increase and decrease. Household controls include household 

size, squared household size, age of the household head, squared age of the household head, gender of the household head, number of infants, 

adult education level and dummies for self-reported idiosyncratic and covariate shocks. Food consumption growth rate is the annualised 

percentage change in (ln) household per a.e. food consumption between t and t-1. L1.Food is lagged household per a.e. (ln) food consumption. 

∆Temp is the difference between average monthly growing season temperature in the period between interviews and long-run (1980-2015) 

average monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the 

difference between average monthly growing season precipitation in the period between interviews and long run (1980-2015) average monthly 

growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. Poor is a dummy with value 1 for 

households with below median initial food consumption. Hot is a dummy with value 1 for households living in an area with an above mean long-

run average monthly growing season temperature. Standard errors are in parentheses and are clustered at the EA and wave levels.   
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 3 

FE regressions – Total consumption 

Dependent variable:                                    

total consumption growth rate 

 

(1) 

 

(2) 

 

(3) 

 

(4) 
 

   
  

 

L1.Cons      -71.193***       -73.532***      -73.618***      -72.671*** 

 (1.299) (1.380) (1.387) (1.338) 
 

∆Temp -0.328   8.494*   9.199*      -319.134*** 

 (4.198) (4.478) (4.736) (39.811) 
 

Poor x ∆Temp      -17.813***      -17.565***  

  (3.748) (3.739)  
 

Hot x ∆Temp   -1.645     

   (3.268)  
 

∆Pre 0.695 1.777 0.217 -6.080 

 (5.848) (7.452) (8.279) (5.597) 
 

Poor x ∆Pre  -5.771 -4.890  

  (8.412) (8.495)  
 

Hot x ∆Pre   2.370  

   (8.380)  
 

Hot          13.687***         

   (2.855) 
 

L1.Cons x ∆Temp          23.868*** 

    (2.988) 

Obs 3,166 3,166 3,166 3,166 

Adj. R2
 0.830 0.833  0.833 0.840 

Vegetation time series Yes Yes Yes Yes 

Household controls Yes Yes Yes Yes 
 

Total temperature effect for poorest 

households 
 

Total temperature effect for households in hot 

areas 
 

Total temperature effect for poorest 

households in hot areas 
 

Total precipitation effect for poorest 

households 
 

Total precipitation effect for households in hot 

areas 
 

  

   -9.319** 

(4.694) 
 

 

 
 

 

 
 

-3.994 

(6.747) 

 

  -8.366* 

(4.897) 
 

7.553 

(4.846) 
 

   -10.012** 

         (5.117) 
 

          -4.673 

 (7.235) 
 

2.587 

(8.879) 

 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time series 

includes data on changes in crop greenness within growing season and onset of greenness increase and decrease. Household controls include 

household size, squared household size, age of the household head, squared age of the household head, gender of the household head, number 

of infants, adult education level and dummies for self-reported idiosyncratic and covariate shocks. Total consumption growth rate is the 

annualised percentage change in (ln) household per a.e. total consumption between t and t-1. L1.Cons is lagged household per a.e. (ln) food 

consumption. ∆Temp is the difference between average monthly growing season temperature in the period between interviews and long-run 

(1980-2015) average monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed in degree 

Celsius. ∆Pre is the difference between average monthly growing season precipitation in the period between interviews and long run (1980-

2015) average monthly growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. Poor is a 

dummy with value 1 for households with below median initial consumption. Hot is a dummy with value 1 for households living in an area 

with an above mean long-run average monthly growing season temperature. Standard errors are in parentheses and are clustered at the EA 

and wave levels.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 4 

FE initial quartile regressions – Food consumption 

 

                                                      

Dependent variable: 

 

(1) 

 

(2) 

Food consumption growth rate   

 
   

L1.Food       -77.172***       -77.224*** 

 (1.344) (1.351) 
 

q1 x ∆Temp      -19.847***       -19.157*** 

 (5.164) (5.338) 
 

q2 x ∆Temp -5.693 -4.985 

 (5.332) (5.403) 
 

q3 x ∆Temp 4.604 5.234 

 (5.659) (5.944) 
 

q4 x ∆Temp       16.115***       16.784*** 

 (5.844) (5.909) 
 

Hot x ∆Temp  -1.386 

  (3.677) 
 

q1 x ∆Pre -6.451 -8.752 

 (10.031) (10.497) 
 

q2 x ∆Pre -4.833 -7.239 

 (8.634) (9.354) 
 

q3 x ∆Pre 5.244 2.913 

 (9.904) (10.943) 
 

q4 x ∆Pre -2.776 -5.841 

 (10.418) (11.452) 
 

Hot x ∆Pre  7.024 

  (10.337) 
 

Hot   3.525 

  (3.702) 

Obs 3,164 3,164 

Adj. R2 0.837 0.837 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. 

Vegetation time series includes data on changes in crop greenness within growing season and onset of greenness 

increase and decrease. Household controls include household size, squared household size, age of the household 

head, squared age of the household head, gender of the household head, number of infants, adult education level 

and dummies for self-reported idiosyncratic and covariate shocks. Food consumption growth rate is the annualised 

percentage change in (ln) household per a.e. food consumption between t and t-1. L1.Food is lagged household 

per a.e. (ln) food consumption.  q1, q2, q3, q4 are initial food consumption quartiles. ∆Temp is the difference 

between average monthly growing season temperature in the period between interviews and long-run (1980-2015) 

average monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed 

in degree Celsius. ∆Pre is the difference between average monthly growing season precipitation in the period 

between interviews and long run (1980-2015) average monthly growing season precipitation, divided by long-

run (1980-2015) standard deviation, expressed in mm.  Hot is a dummy with value 1 for households living in an 

area with above mean long-run average monthly growing season temperature. Standard errors are in parentheses 

and are clustered at the EA and wave levels. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 5 

FE initial quartile regressions – Total consumption  

 

                                                  

Dependent variable: 

 

(1) 

 

(2) 

Total consumption growth rate 
 

  

   

L1.Cons      -75.155***       -75.297*** 

 (1.378) (1.387) 
 

q1 x ∆Temp      -14.965***      -15.279*** 

 (5.068) (5.098) 
 

q2 x ∆Temp -3.732 -3.738 

 (5.504) (5.666) 
 

q3 x ∆Temp 1.483 1.034 

 (4.734) (5.323) 
 

q4 x ∆Temp       18.664***       18.436*** 

 (5.565) (5.624) 
 

Hot x ∆Temp  0.780 

  (3.451) 
 

q1 x ∆Pre -3.016 -5.158 

 (9.118) (9.555) 
 

q2 x ∆Pre -6.526 -7.999 

 (8.921) (9.254) 
 

q3 x ∆Pre 3.671 0.846 

 (8.803) (9.925) 
 

q4 x ∆Pre -5.478 -8.184 

 (10.307) (10.928) 
 

Hot x ∆Pre  6.415 

  (8.563) 
 

Hot          14.725*** 

  (2.894) 

Obs 3,166 3,166 

Adj. R2 0.837 0.837 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. 

Vegetation time series includes data on changes in crop greenness within growing season and onset of greenness increase 

and decrease. Household controls include household size, squared household size, age of the household head, squared 

age of the household head, gender of the household head, number of infants, adult education level and dummies capturing 

self-reported idiosyncratic and covariate shocks. Total consumption growth rate is the annualised percentage change in 

(ln) household per a.e. consumption between t and t-1. L1.Cons is lagged household per a.e. (ln) consumption.  q1, q2, 

q3, q4 are initial consumption quartiles. ∆Temp is the difference between average monthly growing season temperature 

in the period between interviews and long-run (1980-2015) average monthly growing season temperature, divided by 

long-run (1980-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the difference between average 

monthly growing season precipitation in the period between interviews and long run (1980-2015) average monthly 

growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm.  Hot is a dummy 

with value 1 for households living in an area with above mean long-run average monthly growing season temperature. 

Standard errors are in parentheses and are clustered at the EA and wave levels. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 6 

Double threshold model – Hansen Estimator 

 

 

 

Threshold Confidence intervals and effect tests 

Column (1) – Food consumption 

 

1) Threshold estimator (level = 95):  

Model    Threshold    Lower   Upper 

Th-1        13.089       13.086  13.093 

Th-21      13.089       13.084  13.093 

Th-22      13.729       13.709  13.733 

  

2) Threshold effect test (bootstrap = 300 300):  

Dependent (1) (2) 

variable: ∆Food ∆Cons 
   

L1.Food      -74.698***  
 (1.256)  
L1.Cons       -72.326*** 
  (1.295) 

 

∆Pre -2.645 -5.367 
 (6.709) (5.809) 

 

∆Temp_Lower regime     -14.682***      -18.347*** 
 (4.878) (4.863) 

 

∆Temp_Medium regime 5.340 1.383 
 (4.846) (4.386) 

 

∆Temp_Upper regime         29.135***        28.953*** 
 (6.811) (6.638) 

Obs 3,168 3,170 

Adj. R2 0.775 0.770 

Vegetation time series 

Household controls 

Yes 

Yes 

Yes 

Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation 

time series includes data on changes in crop greenness within growing season and onset of greenness increase and decrease. 

Household controls include household size, squared household size, age of the household head, squared age of the household 

head, gender of the household head, number of infants, adult education level and dummies capturing self-reported idiosyncratic 

and covariate shocks. ∆Food is the annualised percentage change in (ln) household per a.e. food consumption between t and t-

1. ∆Cons is the annualised percentage change in (ln) household per a.e. consumption between t and t-1. L1.Food is lagged 

household per a.e. (ln) food consumption. L1.Cons is lagged household per a.e. (ln) consumption. ∆Temp is the difference 

between average monthly growing season temperature in the period between interviews and long-run (1980-2015) average 

monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed in degree Celsius. 

∆Pre is the difference between average monthly growing season precipitation in the period between interviews and long run 

(1980-2015) average monthly growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in 

mm. Standard errors are in parentheses and are clustered at the EA and wave levels.   
* p < 0.10, ** p < 0.05, *** p < 0.01.  
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Threshold        RSS          MSE        Fstat  Prob  Crit10       Crit5 Crit1  

Single           5.12e+05   161.770     141.92 0.000  17.715     22.171       27.298 

Double         5.04e+05   159.234       50.43 0.000  20.140     22.664       26.723 

 

3) Percentage of observations in each regime: 

 

Lower regime: 47.16 % 

Medium regime: 39.90 % 

Upper regime: 12.94 % 

 

 

Column (2) – Total consumption 

 

1) Threshold estimator  (level = 95):  

Model     Threshold   Lower        Upper 

Th-1         13.297       13.285     13.300 

Th-21       12.983       12.979     12.991 

Th-22       14.014       14.005     14.024 

  

2) Threshold effect test (bootstrap = 300 300): 

     

Threshold        RSS            MSE        Fstat Prob  Crit10    Crit5       Crit1 

Single            4.72e+05    148.891    113.50 0.000 16.957   19.678    26.294 

Double          4.61e+05    145.622     73.09  0.000 18.415   22.431    29.031 

 

3) Percentage of observations in each regime: 

 

Lower regime: 23.56 % 

Medium regime: 63.47 % 

Upper regime: 12.97 % 



44 
 

Table 7 

Health expenditure 
 

Dependent variable:    

Share of health expenditure growth rate (1) (2) (3) 

L1.Share of health expenditure      -73.730***      -73.599***       -73.531*** 

 (1.235) (1.232) (1.274) 
 

∆Temp 0.869   

 (20.100) 
 

  

∆Pre -0.248   

 (27.421) 
 

  

q1 x ∆Temp  -4.911 -8.074 

  (20.097) (21.462) 
 

q2 x ∆Temp  0.789 -1.778 

  (22.606) (23.226) 
 

q3 x ∆Temp  15.652 11.926 

  (23.579) (25.551) 
 

q4 x ∆Temp  -6.589 -9.452 

  (22.664) (23.241) 
 

Hot x ∆Temp     7.174 

   (14.605) 
 

q1 x ∆Pre  8.047 6.092 

  (36.340) (38.827) 
 

q2 x ∆Pre  -15.644 -16.615 

  (33.183) (34.962) 
 

q3 x ∆Pre  7.444 3.828 

  (36.515) (40.909) 
 

q4 x ∆Pre  9.122 7.140 

  (39.249) (41.776) 
 

Hot x ∆Pre   7.824 

   (43.651) 
 

Hot         23.312** 

   (2.153) 

Obs. 2,952 2,952 2,952 

Adj. R2 0.820 0.820 0.821 

Vegetation time series Yes Yes Yes 

Household controls Yes Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation 

time series includes data on changes in crop greenness within growing season and onset of greenness increase and decrease. 

Household controls include household size, squared household size, age of the household head, squared age of the household 

head, gender of the household head, number of infants, adult education level and dummies capturing self-reported idiosyncratic 

and covariate shocks. q1, q2, q3, q4 are initial consumption quartiles. Dependent variable is (ln) per a.e. between-wave 

percentage of the health expenditure / total expenditure ratio. L1.Share of health expenditure is lagged ln per a.e. health 

expenditure / total expenditure ratio. ∆Temp is the difference between average monthly growing season temperature in the period 

between interviews and long-run (1980-2015) average monthly growing season temperature, divided by long-run (1980-2015) 

standard deviation, and expressed in degree Celsius. ∆Pre is the difference between average monthly growing season 

precipitation in the period between interviews and long run (1980-2015) average monthly growing season precipitation, divided 

by long-run (1980-2015) standard deviation, expressed in mm. Hot is a dummy with value 1 for households living in an area 

with above mean long-run average monthly growing season temperature. Standard errors are in parentheses and are clustered at 

the EA and wave levels.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Dependent variable: (1) (2) 

 ∆ALP ∆ALP 
   

L1.ALP      -70.206***      -70.657*** 

 (4.677) (4.785) 

 

∆Temp    -23.658**  

 (11.942) 

 

 

∆Pre -14.961  

 (14.656)  

 

q1 x ∆Temp   -32.790** 

  (12.933) 

 

q2 x ∆Temp  -20.770 

  (13.975) 

 

q3 x ∆Temp  -18.107 

  (18.216) 

 

q4 x ∆Temp  -17.618 

  (14.574) 

 

q1 x ∆Pre  -30.274 

  (27.740) 

 

q2 x ∆Pre  1.864 

  (20.903) 

 

q3 x ∆Pre  -18.424 

  (27.794) 

 

q4 x ∆Pre  -14.348 

  (26.282) 

Obs 1,130 1,130 
Vegetation time series Yes Yes 
Household controls Yes Yes 

Hansen – J test (p) 0.235 0.247 
Notes:  All specifications include households FE, wave dummies, year FE and quarter of year dummies. Region 

x time FE and month of interview dummies are used as additional instruments. All household controls are 

treated as endogenous with the exception of self-reported covariate shocks. ∆ALP is agricultural labour 

productivity growth between t and t-1. L1.ALP is lagged (ln) agricultural labour productivity, instrumented 

using lagged assets and education levels at t-1.   q1, q2, q3, q4 are initial total consumption quartiles. ∆Temp 

is the difference between average monthly growing season temperature in the period between interviews and 

long-run (1980-2015) average monthly growing season temperature, divided by long-run (1980-2015) standard 

deviation, and expressed in degree Celsius. ∆Pre is the difference between average monthly growing season 

precipitation in the period between interviews and long run (1980-2015) average monthly growing season 

precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. Weather variables and the 

vegetation time series variables are treated as exogenous. Robust standard errors are in parentheses and are 

corrected using Windmeijer’s procedure.  * p < 0.10, ** p < 0.05, *** p < 0.01. 

Table 8 

Labour productivity – Two-step Difference GMM 
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Table 9 

Crop yields 

Dependent variable: Crop yield (1) (2) (3) 

Number of GDDs (8-34 °C) 0.000 0.000  
 (0.001) 

 

(0.001) 
 

 

Number of GDDs (34 + °C)    -0.020**    -0.022**  
 (0.010) 

 

(0.010) 
 

 

 Precipitation -0.000 -0.000  
 (0.002) 

 

(0.002)  

(Precipitation)2 0.000 0.000  
 (0.000) 

 

(0.000)  

Maize & paddy non-specializers x 

Number of GDDs (8-34 °C) 

-0.000 

(0.000) 

-0.000 

(0.000) 

 

  
  

Maize & paddy non-specializers x 

Number of GDDs (34 + °C) 
0.026 

(0.017) 

 

0.026 

(0.021) 

 

 

Maize & paddy non-specializers 0.460 0.460 

 

 (0.933) (1.099) 

 

q1 x Number of GDDs (34 + °C)       -0.052*** 
   (0.016) 

 

q2 x Number of GDDs (34 + °C)   -0.020 
   (0.015) 

 

q3 x Number of GDDs (34 + °C)   -0.017 
   (0.011) 

 

q4 x Number of GDDs (34 + °C)   0.011 
   (0.021) 

 

q1 x Precipitation   0.001 
   (0.003) 

 

q2 x Precipitation   -0.000 
   (0.004) 

 

q3 x Precipitation   -0.000 
   (0.002) 

 

q4 x Precipitation   -0.002 
   (0.004) 

 

q1 x (Precipitation)2   -0.000 
   (0.000) 

 

q2 x (Precipitation)2   -0.000 
   (0.000) 

 

q3 x (Precipitation)2   0.000 
   (0.000) 

 

q4 x (Precipitation)2   0.000 
   (0.000) 

Obs 3,537 3,537 3,537 

Adj. R2 0.595 0.599 0.599 

Vegetation time series Yes Yes Yes 
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Total effect of Number of GDDs (8-34 °C) 

for households not specialized in maize and paddy production 
 

Total effect of Number of GDDs (34 + °C) 

for households not specialized in maize and paddy production 

 

     -0.000 

(0.001) 
 

0.005 

(0.021) 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time series includes 

data on changes in crop greenness within growing season and onset of greenness increase and decrease. Crop yield is average crop yield (kg / 

ha) during the previous two rainy seasons. ‘Maize & paddy non-specializers’ is a dummy with value 1 for households in which maize and paddy 

account for less than 50% of total crop production in a given wave.  q1, q2, q3, q4 are initial total consumption quartiles.  Standard errors are in 

parentheses and are clustered at the EA and wave levels. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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 Table 10 

Asset smoothing 

 
 

  

Dependent variable: (1) (2) 

Asset growth   
   

L1.Assets       -74.762***      -75.053*** 
 (1.834) (1.832) 

 

∆Temp -5.823  
 (22.094) 

 

 

∆Pre -27.314  
 (32.146)  
q1 x ∆Temp   -2.823 
  (24.355) 

 

q2 x ∆Temp  -3.731 
  (25.099) 

 

q3 x ∆Temp  -16.042 
  (29.640) 

 

q4 x ∆Temp  -4.402 
  (28.642) 

 

q1 x ∆Pre  66.468 
  (44.547) 

 

q2 x ∆Pre  -75.504* 
  (42.217) 

 

q3 x ∆Pre  -80.426* 
  (48.702) 

 

q4 x ∆Pre  -29.418 
  (59.022) 

Obs 2,223 2,223 

Adj. R2 0.800 0.804 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time 

series includes data on changes in crop greenness within growing season and onset of greenness increase and decrease. Household 

controls include household size, squared household size, age of the household head, squared age of the household head, gender of 

the household head, number of infants, adult education level and dummies capturing self-reported idiosyncratic and covariate shocks. 

Asset growth is the annualised percentage change in (ln) household per a.e. household Tropical Livestock Units (TLUs) between t 

and t-1. L1.Assets is lagged household per a.e. (ln) asset level (TLUs). q1, q2, q3, q4 are initial consumption quartiles. ∆Temp is the 

difference between average monthly growing season temperature in the period between interviews and long-run (1980-2015) 

average monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed in degree Celsius. 

∆Pre is the difference between average monthly growing season precipitation in the period between interviews and long run (1980-

2015) average monthly growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. 

Standard errors are in parentheses and are clustered at the EA and wave levels.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Figure 1 

Marginal effect of ΔTemp on food consumption growth  

at different lagged food consumption levels 

 

 

 

 

 

               

                               

 

 

 

 

 

Figure 2 

Marginal effect of ΔTemp on total consumption growth 

at different lagged total consumption levels 
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Appendix 

 

Table A.1  

Instrumented FE regressions – Endogeneity tests 

 

 

 

Endogeneity tests: 

Regressor Test p-value 

L1.Food 0.074 0.786 

L1.Cons 0.423 0.515 

 

 

 

 

 

 

                                                                        

 

Dependent variable: 

 

(1) 

∆Food 

 

(2) 

∆Cons 

   
   

L1.Food  -98.481*  

 (51.761)  
 

L1.Cons        -91.758*** 

  (29.374) 
 

∆Temp  2.846  2.607 

 (7.394) (4.352) 
 

∆Pre         2.440 -0.306 

 (6.178) (7.209) 

Observations 3092 3094 

Adjusted R-squared 0.304 0.342 

Vegetation time series Yes Yes 

Household controls Yes Yes 
Notes: L1.Food is lagged household per a.e. (ln) food consumption, instrumented using lagged assets and education 

levels at t-1.  L1.Cons is lagged household per a.e. (ln) total consumption, instrumented using lagged assets and 

education levels at t-1.  ∆Temp is the difference between average monthly growing season temperature in the period 

between interviews and long-run (1980-2015) average monthly growing season temperature, divided by long-run 

(1980-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the difference between average monthly 

growing season precipitation in the period between interviews and long run (1980-2015) average monthly growing 

season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm Standard errors are in 

parentheses and are clustered at the household and wave levels .   
* p < 0.10, ** p < 0.05, *** p < 0.01.   
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Table A.2 

FE regressions with spatially-robust SEs 

 

 

 

 

 (1) 

 

(2) 

Dependent variable: ∆Food 

 

∆Cons 

 
   

L1.Food -77.224  

  Conley(1999), 50 km cut-off 
  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 
 

      (0.911)*** 

      (0.914)*** 

      (0.943)*** 

 

L1.Cons                              -75.297 

  Conley(1999), 50 km cut-off 
  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 

 

 

 

 

 (1.007)*** 

 (1.037)*** 

 (1.087)*** 

 

q1 x ∆Temp 

 

 -19.157 

 

                            -15.279 

  Conley(1999), 50 km cut-off 
  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 

 

       (3.679)*** 

       (3.744)*** 

       (3.823)*** 

   (3.246)*** 

   (3.255)*** 

   (3.252)*** 

 

q2 x ∆Temp -4.985 -3.738 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 
  Conley(1999), 100 km cut-off 
 

   (3.473) 

   (3.392) 

   (3.370) 

(3.572) 

(3.485) 

(3.322) 

 

 

q3 x ∆Temp 5.324 1.034 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 
  Conley(1999), 100 km cut-off 

 

 (3.704) 

 (3.658) 

 (3.632) 

(3.466) 

(3.427) 

(3.390) 

 

q4 x ∆Temp 16.784                                18.436 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 
  Conley(1999), 100 km cut-off 
 

      (3.572)*** 

      (3.492)*** 

      (3.409)*** 

     (3.539)*** 

     (3.501)*** 

     (3.454)*** 

  

Hot x ∆Temp -1.386 0.780 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 

(2.280) 

(2.293) 

(2.306) 

(2.118) 

(2.124) 

(2.080) 

 

q1 x ∆Pre -8.752 -5.158 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 

(7.473) 

(7.185) 

(7.167) 

(6.665) 

(6.487) 

(6.459) 

 

q2 x ∆Pre -7.239 -7.999 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 
  Conley(1999), 100 km cut-off 
 

(6.245) 

(6.116) 

(6.288) 

(5.942) 

(5.752) 

(5.596) 

 

q3 x ∆Pre 2.913 0.846 

  Conley(1999), 50 km cut-off (6.898) (6.512) 
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  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 

 

(6.956) 

(7.128) 

(6.436) 

(6.434) 

 

q4 x ∆Pre -5.841 -8.184 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 
  Conley(1999), 100 km cut-off 
 

(7.080) 

(7.085) 

(7.023) 

(7.142) 

(6.999) 

(6.908) 

 

Hot x ∆Pre 7.024 6.415 

  Conley(1999), 50 km cut-off 

  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 
 

 (6.520) 

(6.527) 

(6.686) 

(5.557) 

(5.616) 

(5.758) 

 

Hot  3.525 14.725 

  Conley(1999), 50 km cut-off 
  Conley(1999), 75 km cut-off 

  Conley(1999), 100 km cut-off 
 

 (6.588) 

(6.586) 

(6.513) 

    (5.201)*** 

    (5.207)*** 

    (5.244)*** 

Obs 3,164 3.166 

Adj. R2 0.768 0.765 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time series 

includes data on changes in crop greenness within growing season and onset of greenness increase and decrease. Household controls 

include household size, squared household size, age of the household head, squared age of the household head, gender of the household 

head, number of infants, adult education level and dummies for self-reported idiosyncratic and covariate shocks: ∆Food is the annualised 

percentage change in (ln) household per a.e. food consumption between t and t-1. ∆Cons is the annualised percentage change in (ln) 

household per a.e. consumption between t and t-1.. L1.Food is lagged household per a.e. (ln) food consumption. L1.Cons is lagged 

household per a.e. (ln) consumption. q1, q2, q3, q4 are initial food consumption quartiles in Column (1) and initial consumption quartiles 

in Column(2). ∆Temp is the difference between average monthly growing season temperature in the period between interviews and long-

run (1980-2015) average monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed in 

degree Celsius. ∆Pre is the difference between average monthly growing season precipitation in the period between interviews and long 

run (1980-2015) average monthly growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. 

Hot is a dummy with value 1 for households living in an area with above mean long-run average monthly growing season temperature. 

Conley (1999) standard errors are in parentheses and are robust to both spatial and temporal autocorrelation.   
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A.3 

Descriptive statistics – Alternative weather data 

 

     

 Mean Var sd Obs 

 

 

∆Temp 

 

 0.405 

 

 0.131 

 

0.363 

 

3170 

 

∆Pre -21.565 8585.501 92.658 4755 

 

Long-run average 

temperature 

 

23.948 4.362 2.089 4755 

 

Long-run average 

precipitation 

502.203 19198.690 138.559 4755 

 

 
Notes:     
∆Temp is the difference between average monthly growing season temperature in the period between interviews and long-run 

(1983-2015) average monthly growing season temperature divided by long-run (1983-2013) standard deviation, and expressed in 

degree Celsius. ∆Pre is the difference between total precipitation during the previous wettest quarter and long-run average (2001 - 

2013) total precipitation during the wettest quarter divided by average decadal (2001 - 2013) standard deviation, expressed in mm. 

Long-run average temperature is the average monthly growing season temperature over the period 1983-2015, expressed in degree 

Celsius. Long-run average precipitation represents long-run average (2001 - 2013) total precipitation during the wettest quarter. 

Data source is the CRUCY Version 3.23 by the University of East Anglia for temperature data, and the Tanzania LSMS-ISA NPS 

surveys for rainfall data. 
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Table A.4 
 

FE initial quartile regressions - Alternative weather data 

 

 

Dependent  (1) (2) (3) (4) 

Variables: ∆Food ∆Food ∆Cons ∆Cons 

     

L1.Food      -76.191***       -76.234***   

 (1.343) (1.347) 
 

  

L1.Cons         -74.291***      -74.270*** 

   (1.392) (1.396) 
 

q1 x ∆Temp       -14.205***       -14.636***    -10.985**     -11.147** 

 (4.602) (4.736) (4.622) (4.786) 
 

q2 x ∆Temp -5.339 -5.963 -3.778 -3.964 

 (5.507) (5.559) (5.031) (5.073) 
 

q3 x ∆Temp -0.051 -0.649 -1.797 -2.111 

 (5.768) (5.838) (4.809) (4.931) 
 

q4 x ∆Temp     15.130** 

(5.897) 

      14.725** 

(5.906) 

      19.063*** 

(5.058) 

       18.940*** 

(5.155) 
 

Hot x ∆Temp  2.090  2.623 

  (2.453)  (2.342) 
 

q1 x ∆Pre -0.009 -0.002      -3.819*** -0.004 

 (0.011) (0.012) (1.295) (0.011) 
 

q2 x ∆Pre -0.001 0.007 1.124 0.003 

 (0.010) (0.010) (0.763) (0.011) 
 

q3 x ∆Pre     0.019**     0.027** 0.407 0.017 

 (0.009) (0.011) (1.169) (0.011) 
 

q4 x ∆Pre     0.025**       0.036***       5.007***     0.030** 

 (0.010) (0.013) (1.250) (0.014) 
 

Hot x ∆Pre  -0.021*  -0.018 

  (0.012)  (0.011) 
 

Hot   2.193         10.960*** 

  (3.445)  (3.198) 

Obs 3,164 3,164 3,166 3,166 

Adj. R2 0.835 0.836 0.835 0.836 

Vegetation time series Yes Yes Yes Yes 

Household controls Yes Yes Yes Yes 

Notes: All specifications include households FE, wave dummies, region x year FE and quarter of year dummies. Vegetation time series includes 

data on changes in crop greenness within growing season and onset of greenness increase and decrease. Household controls include household 

size, squared household size, age of the household head, squared age of the household head, gender of the household head, number of infants, 

adult education level and dummies capturing self-reported idiosyncratic and covariate shocks. ∆Food is the annualised percentage change in 

(ln) household per a.e. food consumption between t and t-1. ∆Cons is the annualised percentage change in (ln) household per a.e. consumption 

between t and t-1. L1.Food is lagged household per a.e. (ln) food consumption. L1.Cons is lagged household per a.e. (ln) consumption. q1, q2, 

q3, q4 are initial food consumption quartiles in Column (1) and initial consumption quartiles in Column (2). ∆Temp is the difference between 

average monthly growing season temperature in the period between interviews and long-run (1983-2015) average monthly growing season 

temperature, divided by long-run (1983-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the difference between total 

precipitation during the previous wettest quarter and long-run average (2001 – 2013 ) total precipitation during the wettest quarter, expressed 

in mm. Hot is a dummy with value 1 for households living in an area with above mean long-run average monthly growing season temperature. 

Standard errors are in parentheses and are clustered at the EA and wave levels.   
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A.5 

Hausman – Taylor regressions 

 

Dependent variables: (1) (2) 

 ∆Food ∆Cons 
 

  

L1.Food      -75.877***  

 (1.302) 
 

 

L1.Cons       -74.520*** 

  (1.277) 
 

q1 x ∆Temp       -21.797***      -18.784*** 

 (3.888) (3.625) 
 

q2 x ∆Temp      -9.955***    -9.270** 

 (3.818) (4.064) 
 

q3 x ∆Temp -1.894 -4.931 

 (4.615) (3.942) 
 

q4 x ∆Temp 6.179     10.206** 

 (4.372) (4.248) 
 

q1 x ∆Pre -10.441 -7.986 

 (7.424) (7.642) 
 

q2 x ∆Pre -3.261 -7.862 

 (8.020) (7.216) 
 

q3 x ∆Pre 2.289 -0.584 

 (8.345) (7.064) 
 

q4 x ∆Pre -0.020 -1.665 

 (8.364) (8.918) 
 

Long-run average temperature   1.049*     1.246** 

 (0.557) (0.588) 
 

Long-run average precipitation     0.132**   0.129* 

 (0.067) (0.069) 

Obs 3,164 3,166 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Notes: All specifications include wave, region, year and quarter of year dummies. All household controls 

are treated as time-varying endogenous variables with the exception of self-reported covariate shocks. 

Distance (in KMs) to nearest major road is included and treated as time-invariant exogenous. ∆Food is 

the between-wave percentage change in (ln) household per a.e. food consumption. ∆Food is the 

annualised percentage change in (ln) household per a.e. food consumption between t and t-1. L1.Food is 

lagged household per a.e. (ln) food consumption and is treated as endogenous. ∆Cons is the annualised 

percentage change in (ln) household per a.e. consumption between t and t-1. L1.Cons is lagged household 

per a.e. (ln) consumption and is treated as endogenous. q1, q2, q3, q4 are food consumption quartiles in 

Column (1) and total consumption quartiles in Column (2); they are all treated as time-invariant, 

endogenous variables. standard deviation, expressed in mm. ∆Temp is the difference between average 

monthly growing season temperature in the period between interviews and long-run (1980-2015) average 

monthly growing season temperature, divided by long-run (1980-2015) standard deviation, and expressed 

in degree Celsius. ∆Pre is the difference between average monthly growing season precipitation in the 

period between interviews and long run (1980-2015) average monthly growing season precipitation, 

divided by long-run (1980-2015) standard deviation, expressed in mm. All the weather variables are 

treated as exogenous. Standard errors are in parentheses and are clustered at the household level.   
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A.6 

Two-step Difference GMM 
 

Dependent variables: (1) (2) 

 ∆Food ∆Cons 
   

L1.Food     -70.120***  

 (7.108) 
 

 

L1.Cons     -74.439*** 

  (5.701) 
 

q1 x ∆Temp     -19.993***      -20.437*** 

 (6.929) (6.065) 
 

q2 x ∆Temp -9.166 -7.303 

 (5.769) (5.928) 
 

q3 x ∆Temp -7.351 -1.323 

 (6.051) (6.254) 
 

q4 x ∆Temp 4.081 10.417 

 (8.389) (7.461) 
 

q1 x ∆Pre 0.806 -2.193 

 (9.327) (9.242) 
 

q2 x ∆Pre -3.949 -0.300 

 (10.617) (10.181) 
 

q3 x ∆Pre 8.584 12.033 

 (12.051) (10.431) 
 

q4 x ∆Pre 2.755 -3.414 

 (12.770) (12.652) 

Obs 1,581 1.533 

Vegetation time series Yes Yes 

Household controls Yes Yes 

Hansen – J test (p) 0.584 0.510 

Notes: All specifications include households FE, wave dummies, year FE and quarter of year dummies. Region x 

time FE are used as additional instruments. All household controls are treated as endogenous. ∆Food is the 

annualised percentage change in (ln) household per a.e. food consumption between t and t-1. L1.Food is lagged 

household per a.e. (ln) food consumption and is treated as endogenous. ∆Cons is the annualised percentage change 

in (ln) household per a.e. consumption between t and t-1. L1.Cons is lagged household per a.e. (ln) consumption 

and is treated as endogenous. q1, q2, q3, q4 are initial food consumption quartiles in Column (1) and initial total 

consumption quartiles in Column (2). ∆Temp is the difference between average monthly growing season temperature 

in the period between interviews and long-run (1980-2015) average monthly growing season temperature, divided 

by long-run (1980-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the difference between average 

monthly growing season precipitation in the period between interviews and long run (1980-2015) average monthly 

growing season precipitation, divided by long-run (1980-2015) standard deviation, expressed in mm. Weather 

variables and the vegetation time series variables are treated as exogenous. Robust standard errors are in parentheses 

and are corrected using Windmeijer’s procedure.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A.7 

Labour productivity – Endogeneity test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Endogeneity test: 

Regressor Test p-value 

L1.ALP 7.611 0.0058 

  

                                                                        

 

Dependent variable: 

 

(1) 

∆ALP 

  
  

L1.ALP -227.889 

 (220.885) 

 

∆Temp 

 

-58.596 

 (92.139) 

 

∆Pre -15.059 

(71.783) 

  

Observations 2260 

Vegetation time series Yes 

Household controls Yes 
Notes: ∆ALP is agricultural labour productivity growth between t and t-1. L1.ALP is lagged (ln) 

agricultural labour productivity, instrumented using lagged assets and education levels at t-1.  ∆Temp 

is the difference between average monthly growing season temperature in the period between 

interviews and long-run (1980-2015) average monthly growing season temperature, divided by 

long-run (1980-2015) standard deviation, and expressed in degree Celsius. ∆Pre is the difference 

between average monthly growing season precipitation in the period between interviews and long 

run (1980-2015) average monthly growing season precipitation, divided by long-run (1980-2015) 

standard deviation, expressed in mm Standard errors are in parentheses and are clustered at the 

household and wave levels .   
* p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table A.8 

Descriptive statistics –Agricultural Wealth Index 

 

 

 

 

 

 

 

 

                              Notes: q1, q2, q3, q4 are initial consumption quartiles. 

                              Agricultural Wealth Index is from the FAO Rural Income Generating Activities (RIGA) Team. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                              

Variable: Agricultural Wealth Index 

 

     

  Mean Var sd Obs 

 

q1 

q2 

q3 

q4 

 0.066 

 0.097 

 0.018 

 0.228 

1.151 

1.054 

0.841 

1.878 

 

1.073 

1.027 

0.917 

1.370 

905 

981 

931 

836 
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Table A.9 

Descriptive statistics – Main source of income  

 

 

 

 

 

 

 

 

                               Notes: q1, q2, q3, q4 are initial consumption quartiles.  

 

Variable: Main source of income is not farming 

(in at least two periods) - % of households 

 

     

 Yes 

 

24.61 

19.40 

20 

25.25 

33.75 

No 

 

75.39 

80.60 

80 

74.75 

66.25 

 

Whole sample 

q1 

q2 

q3 

q4 
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Table A.10 

Descriptive statistics – Growing degree days 

 

  

     

 Mean Var sd Obs 

 

 
Number of GDDs (8-34 °C) 

 

3905.047 

 

389495.400 

 

624.096 

 

4755 

 
Number of GDDs (34 + °C) 3.280 46.273 6.802 4755 
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Table A.11 

Descriptive statistics – Maize and paddy as a share of total crop production 

 

 

 

 

 

 

 

 

 

 

 

                              

                             Notes: q1, q2, q3, q4 are initial consumption quartiles. 

  

                                                                                                                     

Maize and paddy account for 50% or more of total crop 

production - % of households 

 

     

 Yes 

 

50.59 

58.44 

51.60 

47.81 

No 

 

49.41                                        

41.46 

48.40 

52.19 

 

q1 

q2 

q3 

q4 
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Table A.12 

Descriptive statistics – Average crop yield and quantity produced 

 

 

 

 

 

 

 

                                                 

                                                                         

                                     Notes: q1, q2, q3, q4 are initial consumption quartiles. 

  

  

(1) 

 

 

(2) 

 

 Mean quantity    

(kg) 

Mean crop yield 

(kg / ha) 

 

Obs 

 

q1 

q2 

q3 

q4 

1268.625 

1452.362 

1479.123 

1762.087 

 

715.602 

1033.638 

1225.526 

1201.825 

876 

965 

903 

793 
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Table A.13 

Descriptive statistics – Irrigation 

 

 

 

 

 

 

 

 

 

 

 

                              Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                    

Use of irrigation in the previous long rainy season  

- % of households 

 

     

 Yes 

 

1.95 

3.30 

3.84 

6.05 

No 

 

98.05                               

96.70 

96.16 

93.95 

 

q1 

q2 

q3 

q4 
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Table A.14 

Descriptive statistics – Inorganic fertilizers 

 

 

 

 

 

 

 

 

                      

                      

 

 

                                Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                    

Use of inorganic fertilizers in the previous long rainy season  

- % of households 

 

     

 Yes 

 

17.65 

19.10 

25.25 

23.46 

No 

 

82.35 

80.81 

74.75 

76.54 

 

q1 

q2 

q3 

q4 
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Table A.15 

Descriptive statistics – Use of improved maize seeds on at least one plot 

 

 

 

 

 

 

 

 

                                     

                                  Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                           

Variable: Use of improved maize seeds on at least one plot across 

waves - % of households 

 

     

  Yes 

 

34.16 

41.24                               

46.48 

53.46 

  No 

 

65.84 

58.76 

53.52 

46.54 

 

q1 

q2 

q3 

q4 
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Table A.16 

Descriptive statistics – Use of improved maize seeds on at least half plots 

 

 

 

 

 

 

 

 

                                     

                              Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                            

Variable: Use of improved maize seeds on at least half of the 

household plots across all waves - % of households 

 

     

 Yes 

 

8.77 

10.65                                

18.79 

22.08 

No 

 

91.23 

89.35 

81.21 

77.92 

 

q1 

q2 

q3 

q4 
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Table A.17 

Descriptive statistics – Use of improved paddy seeds on at least one plot 

 

 

 

 

 

 

 

 

                                     

                                   Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                               

Variable: Use of improved maize seeds on at least one plot across 

waves - % of households 

 

     

 Yes 

 

19.35 

24.76                                 

27.03 

27.15 

No 

 

80.65 

75.24 

72.97 

72.85 

 

q1 

q2 

q3 

q4 
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Table A.18 

Descriptive statistics – Use of improved paddy seeds on at least half plots 

 

 

 

 

 

 

 

 

                                     

                                       

                                      Notes: q1, q2, q3, q4 are initial consumption quartiles.

                                                                                                             

Variable: Use of improved paddy seeds on at least half of the 

household plots across all waves - % of households 

 

     

 Yes 

 

4.27 

6.27                                      

6.61 

16.49 

No 

 

95.73 

93.73 

93.39 

83.51 

 

q1 

q2 

q3 

q4 
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Table A.19 

Descriptive statistics –Tropical Livestock Units per adult-equivalent 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          Notes: q1, q2, q3, q4 are initial consumption quartiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                             

Variable: TLU level p.a. 

 

     

 Mean Var sd Obs 

 

Whole sample 

q1 

q2 

q3 

q4 

0.436 

0.257 

0.424 

0.410 

0.680 

1.328 

0.337 

1.031 

1.152 

2.890 

1.152 

0.580 

1.016 

1.073 

1.700 

3653 

926 

963 

937 

827 

 


