Are the EU trade preferences really effective?
A Generalized Propensity Score evaluation of the Southern Mediterranean Countries' case in agriculture and fishery

Autori:
Emiliano Magrini, Pierluigi Montalbano, Silvia Nenci
Are the EU trade preferences really effective?
A Generalized Propensity Score evaluation of the Southern Mediterranean Countries’ case in agriculture and fishery

Emiliano Magrinia, Pierluigi Montalbanob, Silvia Nencic

aEuropean Commission - JRC-IPTS - AGRILIFE Unit (Sevilla, ES)
bDepartment of Economic and Social Sciences - Sapienza, University of Rome (RM), Italy
cDepartment of Economics, University of Roma Tre, Rome (RM), Italy

Abstract

This work assesses the trade impact of preferential schemes in agriculture and fishery granted by the EU to the Southern Mediterranean Countries (SMCs) over the period 2004-2009. The analysis presents several methodological improvements to previous works: 1) a continuous treatment - i.e., preferential margins - to capture the “average treatment effect” of trade preferences; 2) non parametric matching techniques for continuous treatment to assess the average causal effects of preferences on trade flows; and 3) highly disaggregated data at sectoral level in order to evaluate properly the preferential treatment applied at the product level. Our results show how the impact of EU preferences granted to SMCs is positive and significant and better evaluated using impact evaluation techniques. We also assess the functional form of the relationship between EU-SMCs preferences and bilateral trade flows as well as the optimal level of preferential margin above which the marginal impact decreases.

Keywords: International trade, EU-MED integration, Preferential trade agreement, Impact evaluation, Matching econometrics.

JEL classification: C210, F100, F130, F150

Acknowledgements: We are grateful to all the participants in the following Seminars and Conferences where previous versions of the paper have been presented: the ETSG Conference held in Leuven (BE), 13th-15 September 2012; the Seminar held at the Department of Economics, University of Roma III, 6th March 2013. We thank Antonio Accenturo, Luca De Benedictis and Michael Gasiorek for their useful comments and suggestions on an earlier draft. The usual disclaimers apply. Please note the views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

*Corresponding author

Email addresses: Emiliano.MAGRINI@ec.europa.eu (Emiliano Magrini), pierluigi.montalbano@uniroma1.it (Pierluigi Montalbano), silvia.nenci@uniroma3.it (Silvia Nenci)
1. Introduction

In the last two decades the number of Preferential Trade Agreements (PTAs) has increased more than four-fold, to around 300 active agreements today. Nearly all countries are currently members of at least one PTA. Most PTAs now cover a wide range of issues beyond tariffs, including services, investment, intellectual property protection, and competition policy (WTO, 2011).

Since the seminal work of Viner (1950) the effects of PTAs on international trade have been extensively studied. Standard gains from trade have been traditionally associated with the notion of trade creation, while the discriminatory nature of PTAs has been associated with trade diversion. Most of the literature agrees in finding positive effects of PTAs on trade flows among members (e.g. (Baier and Bergstrand, 2007, 2009; Magee, 2008)); some works highlight trade diversion effects on non-member countries (see (Trefler, 2004; Romalis, 2007; Carrère, 2006; Lee and Shin, 2006)); a few studies find not conclusive evidence (see, for example,

Our aim is to provide conclusive evidence on the causal impact of the EU-MED PTAs on trade flows. To this end, our empirical analysis focuses specifically on the impact of trade preferences in agriculture and fishery granted by the European Union (EU) to the Southern Mediterranean Countries (SMCs) via the new generation of the EU-MED Association Agreements (AAs) in the time period 2004-2009 (i.e., from the end of the 12 years transitional period for the majority of AAs to the eve of the economic and political turmoil in the area).

Our analysis presents several methodological improvements to previous empirical works. First of all, we rely on a continuous treatment - i.e., preferential margins - to capture the “average treatment effect” of trade preferences rather than on a binary treatment based on dummy variables. This provides clear advantages: the continuous treatment variable allows to control for heterogeneity in depth and coverage of the EU preferential regime across products and countries as well as for the actual rate of preference utilisation. To this end, we use highly disaggregated data by products. Second, we apply non parametric matching techniques for continuous treatment to assess the average causal effects of preferences on trade flows, overcoming the issue of endogeneity between PTAs, trade flows and their determinants. More specifically, we apply the generalized version of the propensity score matching technique, namely the Generalized Propensity Score (GPS). It estimates treatment effects conditional on observable determinants of “treatment intensity”. Non parametric matching techniques help to isolate the treatment from any other event specific to the country pairs, and take also into account the presence of non-linearities in the relationship between preferences, trade flows and the covariates (Baier and Bergstrand, 2009; Montalbano and Nenci, 2014). GPS, in particular, allows us
to present a dose-response function and to illustrate how bilateral trade flows at the product level actually respond to changes in continuous treatment within the treatment group. In this case the advantage is twofold: we are not compelled to fulfill the hard task to retrieve a control group sharing similar characteristics - which is mandatory with the binary treatment matching techniques - and we address empirically the hot issue of preferences’ utilisation and the relative impact of trade preferences characterised by different intensities. The GPS method has been recently applied to various impact evaluation problems lacking experimental conditions: e.g., the impact of labour market programmes (Kluve, 2010; Kluve et al., 2012), regional transfer schemes (Becker et al., 2012), foreign direct investments (Du and Girma, 2009), and also the relationship between migration and trade (Egger et al., 2012). To the best of our knowledge this is the first GPS application to the assessment of the trade impact of the EU-MED preferential policy.

Our results show that the impact of the EU preferences in agriculture and fishery granted to SMCs is positive and significant on SMCs trade flows. We also assess the functional form of the relationship between the EU preferences and SMCs trade flows towards the EU as well the optimal level of preferential margin above which the marginal impact decreases, likely because of SMCs supply-side constraints.

The work is organised as follows: Section 2 briefly summarises the literature; Section 3 reports some stylised facts on the EU-MED partnership; Section 4 presents the GPS estimator; Section 5 describes variables and data; Section 6 shows the empirical results; Section 7 concludes.

2. Literature review

Two main methodological approaches are commonly applied to measure the impact of preferences scheme on trade flows: computable general equilibrium (CGE) models to quantify the impact *ex ante* and gravity models to measure it *ex post*.

Both static and dynamic effects are considered in recent CGE studies of economic integration (see, among others, (Lee and van der Mensbrugghe, 2008; Bouet et al., 2008). The static model evaluates the one-off, more immediate impact of the removal of trade barriers (Gilbert et al., 2001; Urata and Kiyota, 2005). The dynamic model incorporates medium-term to long-term efficiency gains from resource reallocation and capital accumulation (Cheong, 2003; Francois and Wignaraja, 2008). Yet these models have been criticised because PTA results have been shown to be particularly sensitive to assumptions on the trade elasticity (Brown et al., 1992; Ackerman and Gallagher, 2008) and a further limitation of CGE models is poor economic interpretation of trade policy effects because of their structural complexity and data requirements (Panagariya and Duttagupta, 2001).
In the gravity approach, the effect of trade agreements is usually estimated by including dummy variables to control for the presence of policy factors and assess to what extent PTA partners trade more than would be predicted by standard bilateral trade determinants. The “dummy strategy” is in fact the most workable solution, but unsatisfactory for a number of reasons: it implicitly assumes equal treatment and does not control for gradual implementation of the agreements; it does not control for specific country pair events contemporaneous with PTAs; it is unstable and loses significance the more one controls for heterogeneity in the model. This strand of the empirical literature typically focuses either on EU or on the USA preferences schemes (see, among others, (Acharya et al., 2011; Agostino et al., 2007; Caporale et al., 2012; Collier and Venables, 2007; De Benedictis et al., 2005; Di Rubbo and Canali, 2008; Frazer and Van Biesebroeck, 2010; Martínez-Zarzoso et al., 2009; Péridy, 2005; Nilsson, 2007; Nilsson and Matsson, 2009)). Other studies apply a continuous variable by computing various measures of "preferential margins" guaranteed by a country to its partners (Aiello and Demaria, 2010; Cipollina and Salvatici, 2010; Francois et al., 2006; Hoekman and Nicita, 2011; Kee et al., 2009; Low et al., 2009; Nilsson and Matsson, 2009; Montalbano and Nenci, 2014). Most of the works that employ a dummy variable conduct empirical analysis on aggregate data, while papers that employ continuous variables focus on disaggregated data.

As a PTA is not an exogenous random variable but it is likely to be endogenously determined by and correlated with the country-pair trade flows and its determinants (Baier and Bergstrand, 2007; Egger et al., 2008), several authors have recently addressed the endogeneity issue relying on the impact evaluation methods and, in particular, using non-parametric matching techniques based on the benchmark between treatment and control groups. Persson (2001) has been one of the first to adopt this technique. In his work he uses non-parametric matching estimators to estimate the effects of a common currency on trade. He provides alternative estimates of the treatment effect more robust to selection and non-linearities compared to linear regression strategy previously adopted. More recently, Egger et al. (2008) apply a difference-in-difference analysis based on matching techniques to estimate the impact of endogenous new regional trade agreement membership on trade structure within the OECD economies, finding a strong effect of these agreements on intra-industry trade. The analysis of Baier and Bergstrand (2009) provides the first nonparametric empirical estimates using matching econometrics of the cross-sectionally long-run effects of free trade agreements on members’ trade volume. They find a narrower range (across years) and more economically plausible values of the long-run effects of free trade agreements on members’ trade than parametric ones in cross-section.\footnote{Baier et al. (2013) confirm the above evidence using also a gravity equation of both intensive and extensive margins by employing a long panel dataset with a large number of country pairs, product categories (4 digit SITC) and economic integration.
Millimet and Tchernis (2009) use propensity score-matching estimators to assess the environmental effects of General Agreement on Tariffs and Trade/World Trade Organization membership and the impact of adopting the euro on bilateral trade, finding respectively that the WTO is beneficial for environmental measures and the euro has a positive effect on bilateral trade. Lately, Montalbano and Nenci (2014) present nonparametric matching estimates assessing the trade policy impact of the EU-MED free trade area; Cooke (2013) adopts a matching framework to estimate the impact of the AGOA policy of the USA on the exports of the beneficiary countries; Egger et al. (2012) use a semiparametric approach to the evaluation of the functional form of the relationship between migration (stocks) and trade (bilateral imports).

Our aim is to contribute to this strand of the empirical literature by applying a generalized version of the propensity score matching technique to estimate the impact of EU preferences towards SMCs trade, conditional on observable determinants of “treatment intensity”.

3. The EU-MED preferential trade policy: stylised facts

Over fifteen years after the launch of the Barcelona Process, SMCs are nowadays fully involved in the EU-MED partnership, except Syria (including the Palestinian Authority that holds an Interim Euro-Mediterranean Association Agreement, see Table A.1 in Appendix).

The objective of the network of bilateral AAs between EU member countries and SMCs is to provide for the gradual establishment of a Mediterranean Free Trade Area (FTA) in accordance with the rules of the World Trade Organization (WTO). It foresees the free movement of goods between the EU member countries and SMCs by the gradual removal of customs duties after a transitional period of twelve years following the entry into force of the AAs. As a result, from 1995 to date, SMCs have registered a dramatic decrease in Most Favored Nations (MFN) customs duties (below 18 percent for agricultural products and 5 percent for non-agricultural products) (Femise, 2011).

While all SMCs industrial goods are currently EU duty free, a quite new trade liberalization process is currently in place in the agricultural sector\(^2\). In all SMCs agriculture plays a major role and represents a key resource for the long term sustainability of economic development. On the contrary, agriculture is a relatively small sector in the EU economy, accounting for only 1.1 percent of GDP and 5.1 percent of employment (Tangermann and von Cramon-Taubadel, 2013). Nevertheless, the political weight of the agricultural sector agreements. They carry out a set of robustness check to potential country-selection, firm heterogeneity and reverse causality.\(^2\)Liberalization of trade in services and investment, including the right of establishment, is also part of the Association Agreements’ key objectives, as well as the establishment of bilateral dispute settlement mechanisms for trade matters.
is still remarkable, since it represents about 25 percent of the value of agricultural production in Spain, Italy, Greece, Portugal, Malta and Cyprus (E.C., 2003). The political relevance of agriculture is also testified by the EU relatively high level of protection as well as its considerable heterogeneity. The EU protection is mainly characterized by: tariff-rate quotas, seasonal quotas and tariffs, threshold prices (Chevassus-Lozza et al., 2005), and it varies markedly among different products (Jacquet et al., 2007). In a first step, the process of liberalisation between the EU and SMCs in agricultural and food processing sectors has been partial. However, a widening of the scope of the agreements to include deeper liberalization in agricultural, agro-food and services sectors, as well as a reduction in non-tariff barriers (NTBs), is currently in place (Jarreau, 2011). Even if a wide agricultural liberalization is still behind, some products already benefit from preferences granted within the framework of preferential agreements: more than 80 percent of agricultural products imported from the Mediterranean countries now enter the EU market either duty free or at reduced rates. Reciprocally, one third of EU exports of agricultural products benefits from preferential treatment in the Mediterranean countries. Furthermore, a system of Pan-Euro-Med cumulation of origin - covering also agricultural and fishery products - operates between the EU and SMCs. 3

Notwithstanding the on-going liberalisation process, trade between EU and SMCs remains largely asymmetric. While 95 per cent of EU agricultural and fishery imports comes from outside SMCs, for the majority of SMCs the EU represents the key destination market of their agricultural and fishery exports (more than 70 per cent of agricultural and fishery exports in the case of Algeria, Israel Morocco, more than 50 per cent for Tunisia). Moreover, as it is apparent from Fig. A.1, since the Barcelona Declaration EU-MED trade relations are increased in absolute terms but worsened relatively to the other EU main trade partners 4. Should we conclude that EU trade preferences are not effective? The issue is not trivial. If we compare the EU preferential margins granted to our sample of products that origin from SMCs, before and after the entry into force of each respective EU-SMCs AA, it is apparent not only a reduction in the mean level of protection but also a reduction of their heterogeneity minimum/maximum levels as well as of their dispersion around the mean measured by standard deviation (see Figs. A.3 and A.4 in Appendix). However, if we plot the mean value of exports by product before and after the entry into force of each respective EU-SMCs AA,

3In July 2011 the 42 members of the EU-MED partnership have adopted the “PanEuroMed Protocol on cumulation of origin” that allows economic operators to cumulate processing made in different countries of the region and thus obtain preferential treatment. This Pan-Euro-Med cumulation is based on a network of preferential agreements that define the preferential tariffs, sometimes awarded for a limited volume (within quotas). The tariff reduction and hence the preferential margin enjoyed by the countries varies considerably within these quotas.

4To highlight the different performances of SMCs and CEECs, in the figure we adopt the EU15 group instead of the EU27 one as in the empirical analysis.
a high degree of heterogeneity is still apparent (see figs. from A.5 to A.11 in Appendix). While on average some products actually increase their exports to the EU market, other products reduce their mean export value towards EU. The impression is that the impact of EU preferences is not unambiguous.

4. The GPS estimator

The GPS estimator -originally proposed by Hirano and Imbens (2004) and Imai and van Dyk (2004) - is a generalisation of the binary treatment propensity score. It is a non-parametric method to correct for selection bias in a setting with a continuous treatment, by comparing units that are similar in terms of their observable determinants of “treatment intensity” within the treatment group. Hence, it does not require control groups. It is based on the following assumptions: for each \(i \) there is a vector of covariates \(X_i \), a ”treatment” received, \(T_i \in [t_0, t_1] \) and a potential outcome, \(Y_i = Y_i(T_i) \). Following Hirano and Imbens (2004) we assume: \(Y_i, T_i \) and \(X_i \) are defined on a common probability space; \(T_i \) is continuously distributed with respect to a Lebesgue measure on \(\tau \); \(Y_i = Y_i(T_i) \) is a well defined random variable. For each \(i \) we postulate the existence of a set of potential outcomes, \(Y_i(t) \), for \(t \in \tau \) where \(\tau \) is the interval \([t_0; t_1]\) referred to as the unit-level dose-response function. We are interested in the average dose-response function, across all observations \(i \) that illustrates the expected value of the outcome variable conditional to continuous treatment as follows:

\[
D(t) = \mathbb{E}[Y_i(t)]
\]

(1)

In this exercise we use index \(i = 1, ..., N \) to indicate the 6-digit products traded from SMCs to the EU27 area and assume the unit-level dose-response of potential outcomes in terms of EU bilateral imports, \(Y_{it} \) as a function of the treatment \(t \in \tau \), where \(t \) is the product-level preferential margin granted by the EU. Following Hirano and Imbens (2004), we define GPS as:

\[
R = r(t, X)
\]

(2)

where \(R \) is the propensity score, i.e. the conditional probability of receiving a specific level of treatment given the covariates, which is estimated via the following standard normal model:

\[
\hat{R}_i = \frac{1}{\sqrt{2\pi} \hat{\sigma}^2} \exp \left[-\frac{1}{2\hat{\sigma}^2} (t_i - \hat{\beta}_0 - X_i \hat{\beta}_1)^2 \right]
\]

(3)
The main purpose of estimating GPS is to create covariate balancing. However, the validity of R as a measure of similarity or dissimilarity across product-level observations depends crucially on the validity of a set of assumptions which are standard in impact evaluation literature. First of all, the randomness of the treatment, namely the assumption of “unconfoundedness” or “ignorability of the treatment”. It means that, conditional on observable characteristics, the treatment can be considered as random. Unconfoundedness is a critical assumption in analysing trade preferences since countries sharing preferential agreements are unlikely to be randomly chosen (Baier and Bergstrand, 2007; Egger et al., 2008). Imbens (2000) shows that if the treatment assignment is weakly unconfounded given the observed covariates, then the treatment assignment is weakly unconfounded given GPS. In other words, the GPS has the following property:

$$X \perp \{T = t\} | r(t, X)$$ (4)

Another common assumption is the “overlap assumption”, i.e., the need of maintaining an adequate balance of observations between treatment and control groups. Using GPS we can easily get rid of it since we do not rely on control groups but rather work across GPS strata of various “treatment intensities” on a continuous distribution. Another assumption is the “unique treatment assumption” which is ensured in this case by the high degree of standardisation of the EU AAs. Last but not least we should take into account of the “non-interference assumption”, i.e., possible biases in the relationship between treatment and outcomes deriving from interfering events, such as the standard “trade diversion” effect in PTAs. Since our focus is in assessing the impact of the EU preferences on SMCs export flows, our analysis is not affected by the likely trade diversion of non member countries towards the EU. On the other hand, the small shares of SMCs exports on the EU imports across products actually reduce also the relevance of trade diversion from SMCs (the SMCs product shares higher than 10% of the EU imports are only 4% of total observations, see Figure A.2 in Appendix). A robustness check that leaves out those observations in the empirical analysis is provided in section 6.5

GPS removes the bias associated with differences in covariates in three steps. In the first step, the GPS is estimated and its balancing property checked. If balancing holds, product-level flows within GPS strata can be considered as identical in terms of their observable characteristics, independently of their actual level of treatment.6 Then, two additional steps are needed to eliminate the bias associated with

5 It is worth noting that in our case the presence of trade diversion among SMCs would eventually reduce the estimated causal impact of EU-MED AAs on SMCs trade flows towards the EU.

6 Please note that as long as sufficient covariate balance is achieved, the exact procedure for estimating the GPS is of secondary
differences on the covariates (see Hirano and Imbens (2004) for a proof). The first one is the estimation of the conditional expectation of the outcome as a function of two scalar, the treatment level T and the GPS $R, \beta(t, r) = E[Y|T = t, R = r]$. The final one is to estimate the average dose-response function (DRF) of the outcome (product-level SMCs exports towards EU) averaging the conditional expectation over the GPS at any different level of EU product-level preferential margins, as follows:

$$D(t) = E[\beta(t, r(t, X))]$$

Furthermore, we can estimate the varying marginal effects of the treatment by estimating the treatment effect function, which is the first derivative of the corresponding dose-response function.

5. Variables and Data

In this exercise we make use of three different sets of data: the 6-digit product level preferential margins applied by the EU to the SMCs (i.e., the treatment, T_i); the observable characteristics which explain the probability to reach a specific level of preferential margin (X_i); and the outcome in terms of export flows from SMCs to the EU at the 6-digit product level corresponding to the level of treatment received ($Y(t)$). Table A.2 in Appendix reports a full description and the sources of the data applied in our empirical exercise.

Regarding the continuous variable for the actual product-level preferential margin granted to SMCs in the framework of the EU-MED AAs, we apply here the following measure of preferential margin (PM):

$$PM_{jit} = \frac{\sum_v T^E_{vit} \cdot imp^E_{vit}}{\sum_v imp^E_{vit}} - T^E_{jit} \text{ with } v \neq j$$

where T is the minimum tariff applied by the EU to imports of product i and imp are the EU bilateral imports. i indexes the HS 6 digit categories; j indexes SMCs while v indexes the exporters competing with country j in accessing the EU market; t stands for observed years. While the second term (T^E_{jit}) is simply the minimum tariff applied by the EU to imports of product i from country j, the first term is the counterfactual. The use of the counterfactual acknowledges the fact that for a given country is the relative preference (i.e., the market access conditions relative to that faced by foreign competitors) that matters, not the absolute one, especially in the case of EU, because of the proliferation of EU PTAs all around the world.

7This tariff rate is equal to the MFN applied tariff unless a preferential tariff exists in the database.
It builds on the arguments made by Low et al. (2009); Carrère et al. (2010); Hoekman and Nicita (2011) and it is computed as the trade weighted minimum tariff level the EU imposes on all other countries except j for which the preferential margin is calculated. Weights are the EU bilateral imports of product i from countries v, so as to take into account the supply capacity of SMCs competitors to the EU market. To soften the endogeneity problem we keep trade weights fixed over time in all the observed years (2004-2009) by taking the average values 1996-2003 of the EU bilateral imports. The PM_{jit} provides the relative advantage of SMC j in product i and year t with respect to each trading competitors partner, capturing the discriminatory effects of the overall EU-MED system of preferences. Hence, it provides a reliable measure for the actual differences in the EU market access both across SMCs - within the EU-MED AAs framework - and between SMCs and trade competitors eventually joining other PTAs with the EU. Moreover, the use of the applied tariffs controls directly for the actual utilisation rates of preferences, while the product level analysis controls for heterogeneous preferences on different products’ origins. PM could be positive or negative, depending on the advantage or disadvantage of the SMC_j in product i for each year t with respect to all the other competing exporters to the EU. It varies between the maximum negative bias (i.e., being the only trading partner facing tariffs when all other exporters enjoy duty free access) and the maximum positive bias (i.e., being the only trading partner enjoying duty free access while all other exporters face MFN tariffs). PM is zero when there is no discrimination (i.e., the EU applies identical tariffs across all trading partners including duty free access). It is worth noting that the use of PM solves a number of weaknesses of the simple dummy strategy. First of all, it allows us to rely on a continuous measure of trade preferences. Secondly, it considers both the presence of differentiated treatments in the EU-MED framework as well as the issue of the gradual implementation of the EU-MED AAs. It maintains its own drawbacks as well: it does not take into account the restrictive effects on non-tariff measures; and it takes into account only the direct price effects of tariffs, ignoring the general equilibrium of cross price effects (Fugazza and Nicita, 2013).

The issue of the covariates able to explain the probability to reach a specific level of preferential margin is a hot one. As stated by Baier and Bergstrand (2004), PTAs may well be a response to, rather than a source of, large trade flows, giving ground to endogeneity bias in trade impact evaluations. By introducing asymmetric absolute and relative factor endowments into a Krugman-type increasing-returns/monopolistic-competition model, they present, theoretically and empirically, the following determinants of the likelihood of bilateral PTAs: countries’ economic size, distance, trade similarity and relative factor endowments.\footnote{Baier and Bergstrand (2004) correctly predict, based solely upon economic characteristics, 85 percent of the 286 FTAs existing in 1996 among 1431 pairs of countries and 97 percent of the remaining 1145 pairs with no FTAs.} Following an
early literature on the sectoral determinants of trade protection starting with Finger (1981). Olarreaga and Vaillant (2011) explore the role played by microeconomic and macroeconomic variables in explaining the determinants of temporary trade barriers at the product level for Brazil. Price and value of imports at the product level are the main macroeconomic determinants they use. Furthermore, to control for the role played by other microeconomic determinants belonging to political economy (such as the concentration of the sector, output, or the extent to which workers are unionized), they use fixed effects and time varying effects. Among macroeconomic determinants they focus on MFN tariffs, real bilateral exchange rates (as a measure of competitiveness), and traditional measures such as the level of economic activity, unemployment, and institutional changes. Karacaoglu and Limao (2008) emphasize the role of political economy, together with more standard economic variables, such as trade elasticity, market access, world price, and scale economies. Lastly, Gawande et al. (2011) underline the influence of both political economy variables (such as WTO-bound tariff, import demand elasticity, output-to-import ratio), and trade and product specialization measures (such as intra-industry trade, intermediate output, vertical specialization) in explaining the (weak) demand for protectionism.

In this empirical exercise we control for preferential margins’ actual determinants by assuming three main channels of impact. The first channel controls for country and product specific characteristics as well as time variant events in determining likely sources of protectionism. To this end, a full set of countries, time and products fixed effects as well as the HS6 digit EU import demand elasticities have been considered. To be noted that in the period of observation there are no time-variant political and/or economic occurrences capable to determine a shift in EU trade policy towards SMCs (both the political turmoil widely known as “Arab spring” as well as the economic consequences of the recent financial crisis actually occurred after the period of analysis). Furthermore, in the same period the SMCs under analysis do not register any change in PTAs with other trade partners that can influence their trade flows with the EU.9 The second channel controls for the role of ad valorem equivalents of quotas or other nontariff barriers (NTBs) seen as possible substitutes for preferences. Finally, since there is no much scope for intra-industry and vertical specialisation in agricultural and fishery trade, we control for trade specialisation by relying on simple measures of SMCs trade specialisation as well as EU import penetration by product. Moreover, as suggested by Baier and Bergstrand (2004) we control also for the GDPs difference between trading partners since the probability of a PTAs is higher the more similar are them.

9The only exceptions are Lebanon and Tunisia that joined EFTA during the period of analysis. However, after controlling for this the empirical results do not change.
As a measure of trade specialisation we apply the absolute and relative product-level Lafay index as follows:

\[
L_{jit} = \left[\frac{x_{jt}^j - m_{jt}^j}{x_{jt}^j + m_{jt}^j} - \frac{\sum x_{jt}^j - \sum m_{jt}^j}{\sum x_{jt}^j + \sum m_{jt}^j} \right] \ast \left[\frac{x_{jt}^j + m_{jt}^j}{\sum x_{jt}^j + \sum m_{jt}^j} \right] \ast 100
\]

(8)

This index measures country \(j \) level of trade specialisation or revealed comparative advantage for each year \(t \) as the contribution to the trade balance of each product \(i \) to overall exports of country \(j \). To acknowledge the meaning of the index, please note that if there were no comparative advantage or disadvantage for any industry \(i \), then country \(j \) total trade balance (surplus or deficit) should be distributed across all industries according to their share in total trade. The 'contribution to the trade balance' is the difference between the actual and this theoretical balance. Hence, a positive contribution is interpreted as a 'revealed comparative advantage' for that industry. The advantage of using this index lies in its ability to derive a workable measure of each country's comparative advantages as they are revealed in trade data, avoiding difficulties linked to quantitative evaluations of factor-endowments and relative prices. Of course, decisions about preferences are not driven exclusively by the revealed comparative advantages. There are a number of issues, mainly outside the field of economics, that can have a role in determining a specific preferences structure, also relative to other preferential schemes. To take into account these largely unobservable issues we apply here also a set of country, year and product specific fixed effects to control for all unobserved determinants of \(PM \).

Our outcome variable is the exports flow in agriculture and fisheries from SMCs to the EU disaggregated by export countries, products and year. In this exercise we use HS classification at the maximum disaggregation available (6 digit). Hence, we take into account agricultural, food and fishery products listed under chapters 1 to 24 of the Harmonized System Code (HS), Sections I-IV. To properly link products and tariffs we use WITS-TRAINS dataset. Since the aim of our empirical exercise is to examine whether the effect of the change in tariffs is stronger the greater the advantage it provides relative to other competitors, the choice of the time span (from 2004 to 2009) has been determined by the timetable of the transitional period of 12 years after the entry into force for most of the EU-MED AAs. The choice of limiting the time period to 2009 keeps also the analysis out of the incidence of both political and economic turmoil happened in SMCs.

10The relative version of the product-level Lafay index is:

\[
L_{ijt} = \left[\frac{x_{jt}^j - m_{jt}^j}{x_{jt}^j + m_{jt}^j} - \frac{\sum_j x_{jt}^j - \sum_j m_{jt}^j}{\sum_j x_{jt}^j + \sum_j m_{jt}^j} \right] \ast \left[\frac{x_{jt}^j + m_{jt}^j}{\sum_j x_{jt}^j + \sum_j m_{jt}^j} \right] \ast 100
\]

(7)
during the most recent years.

The complete dataset from 2004 to 2009 includes 1865 observations.11 However, two more sample restrictions are applied. First, we eliminate those observations which can be considered as a ‘duty free access’ case (i.e., when both the counterfactual and the minimum tariff applied by the EU are equal to zero) or where corresponding data on covariates are not available. Second, we eliminate the observations in the first and the last 5 percentiles of the preferential margin distribution in order to clean our dataset from potential outliers. These two restrictions leave us with 1218 observations.

6. GPS estimation and results

6.1. GPS estimation and balancing property

The first step of our impact evaluation exercise is to estimate the GPS and test the “balancing property”. The joint Jarque-Bera normality test does not reject the null hypothesis of normal distribution for the treatment variable.12 Table 1 presents the outcomes of the first stage equation. The selected covariates show to be important determinants for selection into treatment intensities across products and SMCs, including the series of fixed effects previously described. The absolute Lafay index of the EU is positive and significant.13 It indicates that the higher the contribution to the EU trade balance of a specific sector, the higher the probability for SMCs to have a positive preferential margin within the EU overall preferential scheme. Since we are using here a relative measure of preferential margin rather than the absolute one, it shows that, at a certain level of protection for its products of relative specialisation, the EU prefers SMCs relatively to the other main competitors. Conversely, both the absolute Lafay index of the SMCs and the relative Lafay index between EU and SMCs are not significant.14

This empirical evidence suggests that the EU-SMCs preferential scheme is mainly driven by the EU trade policy strategy. The GDP coefficient is robust and negative. It shows, consistently with \textit{Baier and Bergstrand} (2004), that the larger is the GDP difference with SMCs the lower is the EU preference. As expected, the average EU import demand elasticity has a negative sign and it is highly significant, confirming the relatively lower EU propensity for preference for those products whose trade volumes are more sensible to price variations. Finally, the positive sign and significance of the NTBs coefficient confirm the hypothesis

11It includes the available data on both trade flows and tariffs at 6-digit product level for our sample of countries.
12The p-value is equals to 0.24, above the 5\% threshold of significance.
13A three lags of the Lafay index has been considered sufficient in this empirical exercise to avoid endogeneity problem.
14It is worth noting that removing the products where SMCs show higher revealed comparative advantages, the relative Lafay index becomes more robust, showing that the EU preferences are higher on the products where SMCs are less specialised (see Table A.4 in the Appendix).
of substitution between NTBs and tariffs. It highlights empirically the EU strategy to maintain higher preferences in the sectors characterised by relatively higher quotas or other non-tariffs measures.

<table>
<thead>
<tr>
<th>Table 1: Generalised Propensity Score Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>coef</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>L.EU Lafay Index</td>
</tr>
<tr>
<td>L.SMC Lafay Index</td>
</tr>
<tr>
<td>L.EU-SMC Lafay Index</td>
</tr>
<tr>
<td>Ln GDP</td>
</tr>
<tr>
<td>EU imports demand elasticity</td>
</tr>
<tr>
<td>EU average non-tariff barriers</td>
</tr>
<tr>
<td>SMCs Dummies</td>
</tr>
<tr>
<td>Year Dummies</td>
</tr>
<tr>
<td>6-digit product Dummies</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>R squared</td>
</tr>
</tbody>
</table>

Note: In bold the results of the Wald tests for joint significance of the three groups of dummies.

Notwithstanding the relevance of our set of covariates, it is worth noting that in impact evaluation exercises the interpretation and statistical significance of the individual effects of the covariates are of minor importance than getting a powerful GPS (i.e., a GPS that works well in balancing the covariates by respecting the condition in eq. 4). At this purpose, it is not irrelevant to add that the R-squared of our first stage regression is high and consistent with similar GPS empirical exercises (Becker et al., 2012; Serrano-Domingo and Requena-Silvente, 2013).

Following the approach of Egger et al. (2012), we test the balancing property comparing the covariates across groups with and without the GPS correction. Hence, we first perform a series of two-sided t-tests across groups for each covariate. Groups of approximately the same size are formed on the basis of the actual preferential margin intensity, i.e. low (group 1); medium (group 2) and high (group 3). We obtain an average t-stat of 1.26. In 15.2% of the cases (119 over 783), the t-stat rejects the null hypothesis of equal mean among covariates, highlighting the presence of selection bias in the data. In order to remove this unbalance, as in Egger et al. (2012) and Becker et al. (2012), we exploit the results in the first stage

15It means a remarkably high number of tests to be performed (261 variables for three groups, i.e. 783 t-tests), including fixed effects.
estimation (Table 1) to calculate the probability for each trade flow to have the median preferential margin of the group T_j^M (for $j \in 1, 2, 3$), i.e. $\hat{R}_i(T_j^M, X_i)$. We then plot these GPS values in group j against those not in group j (see figs. from A.12 to A.17) and eliminate those observations in other groups than j that lie outside the common GPS support. It means, we drop those trade flows in the control groups (blue bars) which are outside the range of the treatment group (red bars), keeping only those flows which respect the following condition:

$$Min \hat{R}_i(T_j^M, X_i) \leq \hat{R}_i(T_j^M, X_i) \leq Max \hat{R}_i(T_j^M, X_i)$$ (9)

for $i \in j$ and $l \notin j$.

The common GPS support condition is respected by 1095 observations over 1218 used in the first stage, while 123 trade flows are pruned in order to ensure comparability among groups. We then organise data in a group-strata structure for testing the balancing property. It allows us to compare observations between treatment groups across strata based on the estimated GPS, i.e., to control for the ex-ante probability of receiving a specific preferential margin. For each of the three groups six strata are determined on the basis of GPS scores evaluated at the median preferential margin of the respective group. We impose the same structure to the control observations in the same strata but in different groups. Table A.3 reports the final group-strata structure of the data.

To finalise the test of the balancing property, we perform again a series of t-tests comparing the mean difference in all the covariates among trade flows belonging to the same strata but in different groups. For example, we compare the trade flows belonging to Strata 1/Group 1 with the observations in Strata 1/Control 1. For each group, we then calculate the mean t-statistics weighting the t-stats by the number of trade flows in each stratum. After controlling for the GPS score, the average t-stat drops from 1.26 in the pre-conditioning situation to 0.34 in the post-conditioning scenario. The number of cases where the t-stat rejects the null hypothesis of equal mean reduces from 119 to 5, which is less than 3% of the total number of tests.\footnote{The few cases which still reject the balancing property are mainly due to the large number of fixed effects we use in the first stage estimates.} This means that our pre-treatment variables are well balanced among groups confirming that the balancing property assumption holds and selection bias is removed.
6.2. Empirical results and robustness check

The last step of our empirical analysis is to estimate the DRF, i.e., to assess the level of SMCs’ agriculture and fishery exports towards the EU at any specific level of the observed preferential margin, given the estimated GPS.

Please note that the GPS terms in this regression controls for selection into treatment intensities, while the interaction term shows the marginal impact of the treatment relative to the GPS. If selectivity matters, we expect both the GPS and the interaction coefficients to be statistically significant. It means that GPS method highlights possible bias in outcomes that are actually controlled by looking over GPS strata as well as - by using the interaction term - across GPS. In other words, if GPS is statistically significant we denote the likely presence of self-selection bias (i.e., unobserved heterogeneity in treatment propensity that may be related to the variables of outcomes) for unmatched observations.

A number of polynomials can be tested for assessing the above relationship. As in Egger et al. (2012) we chose to disregard polynomial terms that turned out to be insignificant. The corresponding results for the parsimonious, semi-parametric dose-response functions are summarised in Table 2. It is worth noting that as emphasised by Hirano and Imbens (2004), similarly to what occurred in the first stage case, the parameters reported in Table 2 do not have a causal interpretation. Also in this case R-squared is relatively high given the parsimonious specification and consistent with similar GPS empirical exercises.

Table 2 shows the DRF parameters estimated using OLS. The key finding is that EU preferences do impact positively on the average level of SMCs export flows towards the EU. This result is robust and significant. Selection into treatment intensities is relevant as well (the GPS coefficient is positive and significant) and the marginal impact of treatment intensity decreases along with GPS intensities, as shown by the negative sign of the the interaction term coefficient.

<table>
<thead>
<tr>
<th></th>
<th>Coef</th>
<th>SE(robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.127***</td>
<td>0.046</td>
</tr>
<tr>
<td>PM^2</td>
<td>0.008***</td>
<td>0.001</td>
</tr>
<tr>
<td>PM^3</td>
<td>-0.000***</td>
<td>0.000</td>
</tr>
<tr>
<td>GPS</td>
<td>33.384***</td>
<td>1.529</td>
</tr>
<tr>
<td>$GPS \times PM$</td>
<td>-1.837***</td>
<td>0.693</td>
</tr>
<tr>
<td>Observations</td>
<td>1 095</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

17 Other polynomial specifications neither add any relevant information nor affect the dose response function.
The left panel of Fig. 1 reports the graphical representation of the point estimates of the DRF while the right panel of Fig. 1 represents the treatment effect function, i.e. the first derivative of the DRF. The corresponding standard errors and 90% confidence intervals of both functions are also reported in the figures and estimated via bootstrapping. The left panel of the figure shows how the relationship between the product level preferential margin granted by the EU in agricultural and fishery products and the respective level of SMCs exports towards the EU is positive and increasing till a certain level of preference (around 2.5). This is a relevant issue for policy-making since it suggests a supply constraint for SMCs to additional EU preferences over a certain point. The treatment effect function in the right panel of Fig. 1 shows that the marginal change of SMCs exports in correspondence of a marginal change of the EU preferences increases when the level of preferences is heavily negative and decreases towards neutrality.

To control for the potential bias that could derive from trade diversion among SMCs, we undertake the same exercise by dropping the SMCs products whose shares on the EU imports are higher than 10%. As it is evident from Table 3 there is no material difference in the results. Due to space constraints the first stage outcomes are presented in Table A.4 in the Appendix.
<table>
<thead>
<tr>
<th>partner</th>
<th>margins</th>
<th>mean exports (2004-09)</th>
<th>impact 25%</th>
<th>impact 50%</th>
<th>impact 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>0.050656</td>
<td>16847.74</td>
<td>21.34</td>
<td>42.67</td>
<td>64.01</td>
</tr>
<tr>
<td>Israel</td>
<td>-0.01121</td>
<td>511758.7</td>
<td>-143.41</td>
<td>-286.83</td>
<td>-430.24</td>
</tr>
<tr>
<td>Jordan</td>
<td>0.066089</td>
<td>9788.063</td>
<td>16.17</td>
<td>32.34</td>
<td>48.52</td>
</tr>
<tr>
<td>Lebanon</td>
<td>0.092383</td>
<td>25794.69</td>
<td>59.57</td>
<td>119.15</td>
<td>178.72</td>
</tr>
<tr>
<td>Morocco</td>
<td>0.046458</td>
<td>490469.2</td>
<td>569.65</td>
<td>1139.31</td>
<td>1708.96</td>
</tr>
<tr>
<td>Tunisia</td>
<td>0.05582</td>
<td>27436.78</td>
<td>38.29</td>
<td>76.58</td>
<td>114.86</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.030691</td>
<td>290392.2</td>
<td>222.81</td>
<td>445.63</td>
<td>668.44</td>
</tr>
</tbody>
</table>

As it is apparent from Table 4 the mean impact is positive for all SMCs with the relevant exception of Israel which is characterised by a negative average level of preferential margin from the EU and, as a result, by an expected decrease of trade flows in agriculture and fishery towards EU18. However, the overall marginal impacts of a change in the EU preferences are actually very small (always less than 1% of the total exports for each SMC). This result is consistent and complementary with previous empirical results on the same topic characterised by a gravity approach 19MontalbanoNenci14.

7. Conclusions

The most recent debate on PTAs is focusing on the following research question: do preferences impact trade? While the common perception is that preferences do impact positively on trade, empirical evidence

18It is worth noting that the peculiar political and economic situation of Israel in the framework of the EU-MED partnership is adequately controlled by the full set of fixed effects in our empirical estimates

19MontalbanoNenci14.
is controversial. The issue is becoming hotter in the framework of the EU-MED PTAs, since trade relations between EU and SMCs are actually worsening relatively to the other EU main trade partners since the Barcelona Declaration. The aim of this work is to assess the trade impact of EU-MED preferential schemes in agriculture and fishery by adopting a novel methodological approach, namely a GPS matching technique. Differently from the majority of current analyses, we choose a continuous variable to measure preferences to capture the "average treatment effect" of PTAs. Second, we apply non parametric matching techniques for continuous treatment to assess the average causal effects of preferences on trade flows. Third, we use highly disaggregated data at sectoral level in order to evaluate properly the preferential treatment which is conceived to be applied at the product level. Our paper assesses the functional form of the relationship between EU-SMCs preferences in agriculture and fishery products and bilateral trade flows with continuous treatment under the (weak) unconfoundedness assumption. Our empirical results show that the impact of the EU product-level preferential policy on SMC trade flows in agricultural and fishery products is significant and better evaluated using impact evaluation techniques. They also suggest that the expected positive effect of the preferential margins on the SMCs trade flows decreases over a certain degree of additional preferences with respect to their main EU competitors and that the actual impact of preferences is low in monetary terms. These outcomes raise very relevant issues for policy-making since they suggest the presence of a supply constraint for SMCs even in a framework of increasing EU preferences as well as the weak efficiency of the EU trade policy in the area.

References

Appendix A.

Table A.1: State of implementation of EU-MED AAs

<table>
<thead>
<tr>
<th>Country</th>
<th>Signature date</th>
<th>Entry into force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>22 April 2002</td>
<td>1 September 2005</td>
</tr>
<tr>
<td>Egypt</td>
<td>25 June 2001</td>
<td>1 June 2004</td>
</tr>
<tr>
<td>Israel</td>
<td>20 November 1995</td>
<td>1 June 2000</td>
</tr>
<tr>
<td>Jordan</td>
<td>24 November 1997</td>
<td>1 May 2002</td>
</tr>
<tr>
<td>Lebanon</td>
<td>17 June 2002</td>
<td>1 April 2006</td>
</tr>
<tr>
<td>Morocco</td>
<td>26 February 1996</td>
<td>1 March 2000</td>
</tr>
<tr>
<td>Palestinian Authority</td>
<td>24 February 1997</td>
<td>1 July 1997 (Interim association agreement)</td>
</tr>
<tr>
<td>Syria</td>
<td>Negotiations concluded awaiting for signature</td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>17 July 1995</td>
<td>1 March 1998</td>
</tr>
<tr>
<td>Turkey</td>
<td>6 March 1995</td>
<td>31 December 1995</td>
</tr>
</tbody>
</table>

Table A.2: Variables and data sources

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome variable</td>
<td>Export flows in agriculture and fisheries (Chapters 1 to 24 of the HS code, Sections I-IV)</td>
<td>UN-COMTRADE</td>
</tr>
<tr>
<td>Treatment variable</td>
<td>Preferential margin (the 6-digit product level applied tariff)</td>
<td>WITS-TRAINS</td>
</tr>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutions/political economy</td>
<td>Countries, time & products fixed effects; EU Import demand elasticities (HS6)</td>
<td>Kee, Nicita & Olarreaga, RES 2008</td>
</tr>
<tr>
<td>Trade specialisation</td>
<td>Absolute and relative Lafay index; GDPs difference</td>
<td>UN-COMTRADE, WDI</td>
</tr>
<tr>
<td>NTBs</td>
<td>Ad valorem equivalents of quotas or other nontariff barriers</td>
<td>Kee, Nicita & Olarreaga, RES 2008</td>
</tr>
</tbody>
</table>

Table A.3: The final group-strata structure

<table>
<thead>
<tr>
<th>Strata</th>
<th>Control1</th>
<th>Group1</th>
<th>Control2</th>
<th>Group2</th>
<th>Control3</th>
<th>Group3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>403</td>
<td>58</td>
<td>285</td>
<td>69</td>
<td>482</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>158</td>
<td>57</td>
<td>115</td>
<td>69</td>
<td>125</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>82</td>
<td>58</td>
<td>87</td>
<td>68</td>
<td>73</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>57</td>
<td>74</td>
<td>69</td>
<td>42</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>58</td>
<td>70</td>
<td>69</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>57</td>
<td>52</td>
<td>68</td>
<td>12</td>
<td>56</td>
</tr>
</tbody>
</table>
Table A.4: Generalised Propensity Score Estimation (product shares on the EU imports less than 10%)

<table>
<thead>
<tr>
<th></th>
<th>coef</th>
<th>SE (robust)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.EU Lafay Index</td>
<td>552.76***</td>
<td>205.070</td>
</tr>
<tr>
<td>L.SMC Lafay Index</td>
<td>1.53</td>
<td>3.644</td>
</tr>
<tr>
<td>L.EU-SMC Lafay Index</td>
<td>-0.05</td>
<td>0.045</td>
</tr>
<tr>
<td>LnGDP</td>
<td>-29.71***</td>
<td>8.236</td>
</tr>
<tr>
<td>EU imports demand elasticity</td>
<td>-12.08***</td>
<td>3.365</td>
</tr>
<tr>
<td>EU average non-tariff barriers</td>
<td>643.81***</td>
<td>176.754</td>
</tr>
<tr>
<td>SMCs Dummies</td>
<td>Yes</td>
<td>4.94***</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>Yes</td>
<td>3.70***</td>
</tr>
<tr>
<td>6-digit product Dummies</td>
<td>Yes</td>
<td>59823.42***</td>
</tr>
<tr>
<td>Observations</td>
<td>1 169</td>
<td></td>
</tr>
<tr>
<td>R squared</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

Figure A.1: EU Trade with its main partners (1996-2009)

Source: Authors’ own calculations on Comtrade

26
Figure A.2: EU imports share from SMCs in agricultural and fishery products

Source: Authors’ own calculations on Comtrade

Figure A.3: EU preferences towards SMCs (mean stdev min max)(before AA entry into force)

Source: Authors’ own calculations on Comtrade
Figure A.4: EU preferences towards SMCs (mean stdev min max) (after AA entry into force)

Source: Authors’ own calculations on Comtrade

Figure A.5: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade
Figure A.6: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade

Figure A.7: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade
Figure A.8: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade

Figure A.9: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade
Figure A.10: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade

Figure A.11: SMCs external trade: before and after AA Entry into force

Source: Authors’ own calculations on Comtrade
Figure A.12: Common support of GPS B1

Source: Authors’ calculations

Figure A.13: Common support of GPS A1

Source: Authors’ calculations
Figure A.14: Common support of GPS B2

Source: Authors’ calculations
Figure A.15: Common support of GPS A2

Source: Authors’ calculations
Figure A.16: Common support of GPS B3

Source: Authors’ calculations

Figure A.17: Common support of GPS A3

Source: Authors’ calculations